Tavazoei,
M. S.
, and
Haeri,
M.
, 2009, “
Describing Function Based Methods for Predicting Chaos in a Class of Fractional Order Differential Equations,” Nonlinear Dyn.,
57(3), pp. 363–373.

[CrossRef]
Podlubny,
I.
, 1999, Fractional Differential Equations,
Academic Press,
New York.

Bagley,
R. L.
, and
Torvik,
P. J.
, 1984, “
On the Appearance of the Fractional Derivative in the Behavior of Real Materials,” ASME J. Appl. Mech.,
51(2), pp. 294–298.

[CrossRef]
Caputo,
M.
, 1969, Elasticita` e Dissipazione,
Zanichelli,
Bologna, Italy.

Suarez,
L. E.
, and
Shokooh,
A.
, 1997, “
An Eigenvector Expansion Method for the Solution of Motion Containing Fractional Derivatives,” ASME J. Appl. Mech.,
64(3), pp. 629–635.

[CrossRef]
Miller,
K. S.
, and
Ross,
B.
, 1993, An Introduction to the Fractional Calculus and Fractional Differential Equations,
Wiley,
New York.

Oldham,
K. B.
, and
Spainer,
J.
, 1974, The Fractional Calculus,
Academic Press,
New York.

Caputo,
M.
, 1967, “
Linear Model of Dissipation Whose

*Q* is Almost Frequency Independent, Part II,” J. R. Astron. Soc.,
13(5), pp. 529–539.

[CrossRef]
Das,
S.
, 2011, Functional Fractional Calculus,
Springer-Verlag,
Berlin.

Herrmann,
R.
, 2011, Fractional Calculus an Introduction to Physicists,
World Scientific,
Singapore.

Gupta,
A. K.
, and
Saha Ray,
S.
, 2014, “
On the Solutions of Fractional Burgers–Fisher and Generalized Fisher's Equations Using Two Reliable Methods,” Int. J. Math. Math. Sci.,
2014, p. 682910.

[CrossRef]
Saha Ray,
S.
, 2012, “
On Haar Wavelet Operational Matrix of General Order and Its Application for the Numerical Solution of Fractional Bagley Torvik Equation,” Appl. Math. Comput.,
218(9), pp. 5239–5248.

Gupta,
A. K.
, and
Saha Ray,
S.
, 2014, “
Comparison Between Homotopy Perturbation Method and Optimal Homotopy Asymptotic Method for the Soliton Solution of Boussinesq–Burgers Equation,” Comput. Fluids,
103, pp. 34–41.

[CrossRef]
Saha Ray,
S.
, and
Gupta,
A. K.
, 2014, “
A Two-Dimensional Haar Wavelet Approach for the Numerical Simulations of Time and Space Fractional Fokker–Planck Equations in Modelling of Anomalous Diffusion Systems,” J. Math. Chem.,
52(8), pp. 2277–2293.

[CrossRef]
Jiang,
H.
,
Liu,
F.
,
Turner,
I.
, and
Burrage,
I.
, 2012, “
Analytical Solutions for the Multi-Term Time-Space Caputo–Riesz Fractional Advection-Diffusion Equations on a Finite Domain,” J. Math. Anal. Appl.,
389(2), pp. 1117–1127.

[CrossRef]
Yıldırım,
A.
, and
Kocak,
H.
, 2009, “
Homotopy Perturbation Method for Solving the Space-Time Fractional Advection-Dispersion Equation,” Adv. Water Resour.,
32(12), pp. 1711–1716.

[CrossRef]
Saha Ray,
S.
,
Chaudhuri,
K. S.
, and
Bera,
R. K.
, 2006, “
Analytical Approximate Solution of Nonlinear Dynamic System Containing Fractional Derivative by Modified Decomposition Method,” Appl. Math. Comput.,
182(1), pp. 544–552.

Gorenflo,
R.
,
Mainardi,
F.
, and
Vivoli,
A.
, 2007, “
Continuous-Time Random Walk and Parametric Subordination in Fractional Diffusion,” Chaos, Solitons Fractals,
34(1), pp. 87–103.

[CrossRef]
He,
J. H.
, 1998, “
Nonlinear Oscillation With Fractional Derivative and Its Applications,” International Conference on Vibrating Engineering’98, Dalian, China, pp. 288–291.

He,
J. H.
, 1999, “
Some Applications of Nonlinear Fractional Differential Equations and Their Approximations,” Bull. Sci. Technol.,
15(2), pp. 86–90.

Bagley,
R. L.
, and
Torvik,
P. J.
, 1983, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity,” J. Rheol.,
27(3), pp. 201–210.

[CrossRef]
Bagley,
R. L.
, and
Torvik,
P. J.
, 1983, “
Fractional Calculus—A Different Approach to the Analysis of Viscoelastically Damped Structures,” AIAA J.,
21(5), pp. 741–748.

[CrossRef]
Bagley,
R. L.
, and
Torvik,
P. J.
, 1985, “
Fractional Calculus in the Transient Analysis of Viscoelastically Damped Structures,” AIAA J.,
23(6), pp. 918–925.

[CrossRef]
Sun,
H. H.
,
Onaral,
B.
, and
Tsao,
Y.
, 1984, “
Application of Positive Reality Principle to Metal Electrode Linear Polarization Phenomena,” IEEE Trans. Biomed. Eng.,
31(10), pp. 664–674.

[CrossRef] [PubMed]
Sun,
H. H.
,
Abdelvahab,
A. A.
, and
Onaral,
B.
, 1984, “
Linear Approximation of Transfer Function With a Pole of Fractional Order,” IEEE Trans. Autom. Control,
29(5), pp. 441–444.

[CrossRef]
Mandelbrot,
B.
, 1967, “
Some Noises With 1

*/f* Spectrum, a Bridge Between Direct Current and White Noise,” IEEE Trans. Inf. Theory,
13(2), pp. 289–298.

[CrossRef]
Hartley,
T. T.
, 1995, “
Chaos in a Fractional Order Chua System,” IEEE Trans. Circuits Syst.,
42(8), pp. 485–490.

[CrossRef]
Inc,
M.
, 2008, “
Approximate Analytical Solution of the Space-and Time-Fractional Burgers Equations With Initial Conditions by Variational Iteration Method,” J. Math. Anal. Appl.,
345(1), pp. 476–484.

[CrossRef]
Saha Ray,
S.
, and
Bera,
R. K.
, 2005, “
An Approximate Solution of a Nonlinear Fractional Differential Equation by Adomian Decomposition Method,” Appl. Math. Comput.,
167(1), pp. 561–571.

Saha Ray,
S.
, and
Bera,
R. K.
, 2005, “
Analytical Solution of the Bagley Torvik Equation by Adomian Decomposition Method,” Appl. Math. Comput.,
168(1), pp. 398–410.

Odibat,
Z. M.
, 2011, “
On Legendre Polynomial Approximation With the VIM or HAM for Numerical Treatment of Nonlinear Fractional Differential Equations,” J. Comput. Appl. Math.,
235(9), pp. 2956–2968.

[CrossRef]
Gupta,
A. K.
, and
Saha Ray,
S.
, 2015, “
The Comparison of Two Reliable Methods for Accurate Solution of Time-Fractional Kaup–Kupershmidt Equation Arising in Capillary Gravity Waves,” Math. Methods Appl. Sci.,
39(3), pp. 583–592.

[CrossRef]
Saha Ray,
S.
, 2013, “
Soliton Solutions for Time Fractional Coupled Modified KdV Equations Using New Coupled Fractional Reduced Differential Transform Method,” J. Math. Chem.,
51(8), pp. 2214–2229.

[CrossRef]
Wazwaz,
A. M.
, 2009, Partial Differential Equations and Solitary Waves Theory,
Springer, Higher Education Press,
Berlin.

Shang,
N.
, and
Zheng,
B.
, 2013, “
Exact Solutions for Three Fractional Partial Differential Equations by the
G
/
G
′ Method,” Int. J. Appl. Math.,
43(3), pp. 1–6.

Saha Ray,
S.
, and
Gupta,
A. K.
, 2016, “
Numerical Solution of Fractional Partial Differential Equation of Parabolic Type With Dirichlet Boundary Conditions Using Two-Dimensional Legendre Wavelets Method,” ASME J. Comput. Nonlinear Dyn.,
11(1), p. 011012.

[CrossRef]
Wang,
Y.
, and
Fan,
Q.
, 2012, “
The Second Kind Chebyshev Wavelet Method for Solving Fractional Differential Equations,” Appl. Math. Comput.,
218(17), pp. 8592–8601.

Whitham,
G. B.
, 1967, “
Variational Methods and Applications to Water Wave,” Proc. R. Soc. London, Ser. A,
299(1456), pp. 6–25.

[CrossRef]
Fornberg,
B.
, and
Whitham,
G. B.
, 1978, “
A Numerical and Theoretical Study of Certain Nonlinear Wave Phenomena,” Philos. Trans. R. Soc. London Ser. A,
289(1361), pp. 373–404.

[CrossRef]
He,
B.
,
Meng,
Q.
, and
Li,
S.
, 2010, “
Explicit Peakon and Solitary Wave Solutions for the Modified Fornberg–Whitham Equation,” Appl. Math. Comput.,
217(5), pp. 1976–1982.

Abidi,
F.
, and
Omrani,
K.
, 2010, “
The Homotopy Analysis Method for Solving the Fornberg–Whitham Equation and Comparison With Adomian's Decomposition Method,” Comput. Math. Appl.,
59(8), pp. 2743–2750.

[CrossRef]
Zhou,
J.
, and
Tian,
L.
, 2008, “
A Type of Bounded Traveling Wave Solutions for the Fornberg–Whitham Equation,” J. Math. Anal. Appl.,
346(1), pp. 255–261.

[CrossRef]
Gupta,
P. K.
, and
Singh,
M.
, 2011, “
Homotopy Perturbation Method for Fractional Fornberg–Whitham Equation,” Comput. Math. Appl.,
61(2), pp. 250–254.

[CrossRef]
Sakar,
M. G.
,
Erdogan,
F.
, and
Yıldırım,
A.
, 2012, “
Variational Iteration Method for the Time-Fractional Fornberg–Whitham Equation,” Comput. Math. Appl.,
63(9), pp. 1382–1388.

[CrossRef]
Chen,
A.
,
Li,
J.
,
Deng,
X.
, and
Huang,
W.
, 2009, “
Travelling Wave Solutions of the Fornberg–Whitham Equation,” Appl. Math. Comput.,
215(8), pp. 3068–3075.

Hesam,
S.
,
Nazemi,
A.
, and
Haghbin,
A.
, 2012, “
Reduced Differential Transform Method for Solving the Fornberg–Whitham Type Equation,” Int. J. Nonlinear Sci.,
13(2), pp. 158–162.

Lu,
J.
, 2011, “
An Analytical Approach to the Fornberg–Whitham Type Equations by Using the Variational Iteration Method,” Comput. Math. Appl.,
61(8), pp. 2010–2013.

[CrossRef]
Saha Ray,
S.
, and
Gupta,
A. K.
, 2015, “
A Numerical Investigation of Time-Fractional Modified Fornberg–Whitham Equation for Analysing the Behaviour of Water Waves,” Appl. Math. Comput.,
266, pp. 135–148.

Raslan,
K. R.
, 2008, “
The First Integral Method for Solving Some Important Nonlinear Partial Differential Equations,” Nonlinear Dyn.,
53(4), pp. 281–286.

[CrossRef]
Abbasbandy,
S.
, and
Shirzadi,
A.
, 2010, “
The First Integral Method for Modified Benjamin–Bona–Mahony Equation,” Commun. Nonlinear Sci. Numer. Simul.,
15(7), pp. 1759–1764.

[CrossRef]
Lu,
B.
, 2012, “
The First Integral Method for Some Time Fractional Differential Equations,” J. Math. Anal. Appl.,
395(2), pp. 684–693.

[CrossRef]
Jafari,
H.
,
Soltani,
R.
,
Khalique,
C. M.
, and
Baleanu,
D.
, 2013, “
Exact Solutions of Two Nonlinear Partial Differential Equations by Using the First Integral Method,” Boundary Value Probl.,
2013(1), p. 117.

[CrossRef]
Bekir,
A.
,
Güner,
Ö.
, and
Ünsal,
Ö.
, 2015, “
The First Integral Method for Exact Solutions of Nonlinear Fractional Differential Equations,” ASME J. Comput. Nonlinear Dyn.,
10(2), p. 021020.

[CrossRef]
Samko,
S. G.
,
Kilbas,
A. A.
, and
Marichev,
O. I.
, 1993, Fractional Integrals and Derivatives: Theory and Applications,
Taylor and Francis,
London.

Yang,
X. J.
, 2012, Advanced Local Fractional Calculus and Its Applications,
World Science Publisher,
New York.

Yang,
X. J.
, 2012, “
A Short Note on Local Fractional Calculus of Function of One Variable,” J. Appl. Libr. Inf. Sci.,
1(1), pp. 1–13.

Yang,
X. J.
, 2012, “
The Zero-Mass Renormalization Group Differential Equations and Limit Cycles in Non-Smooth Initial Value Problems,” Prespacetime J.,
3(9), pp. 913–923.

Hu,
M. S.
,
Baleanu,
D.
, and
Yang,
X. J.
, 2013, “
One-Phase Problems for Discontinuous Heat Transfer in Fractal Media,” Math. Probl. Eng.,
2013, p. 358473.

Agarwal,
O. P.
, 2004, “
A General Formulation and Solution Scheme for Fractional Optimal Control Problems,” Nonlinear Dyn.,
38, pp. 323–337.

[CrossRef]
Su,
W. H.
,
Yang,
X. J.
,
Jafari,
H.
, and
Baleanu,
D.
, 2013, “
Fractional Complex Transform Method for Wave Equations on Cantor Sets Within Local Fractional Differential Operator,” Adv. Differ. Equations,
2013(97), pp. 1–8.

Yang,
X. J.
,
Baleanu,
D.
, and
Srivastava,
H. M.
, 2015, Local Fractional Integral Transforms and Their Applications,
Academic Press (Elsevier),
London.

Ding,
T. R.
, and
Li,
C. Z.
, 1996, Ordinary Differential Equations,
Peking University Press,
Peking, China.

Bourbaki,
N.
, 1972, Commutative Algebra,
Addison-Wesley,
Paris, France.

Feng,
Z.
, and
Wang,
X.
, 2001, “
Explicit Exact Solitary Wave Solutions for the Kundu Equation and the Derivative Schrödinger Equation,” Phys. Scr.,
64(1), pp. 7–14.

[CrossRef]
Feng,
Z.
, and
Roger,
K.
, 2007, “
Traveling Waves to a Burgers–Korteweg–de Vries-Type Equation With Higher-Order Nonlinearities,” J. Math. Anal. Appl.,
328(2), pp. 1435–1450.

[CrossRef]
Marinca,
V.
, and
Herisanu,
N.
, 2011, Nonlinear Dynamical Systems in Engineering,
Springer-Verlag,
Berlin.