Bluman,
G. W.
, and
Kumei,
S.
, 1989, Symmetries and Differential Equations,
Springer-Verlag,
New York.

Ovsiannikov,
L. V.
, 1978, Group Analysis of Differential Equations,
Nauka,
Moscow, Russia.

Ibragimov,
N. H.
, ed., 1994, CRC Handbook of Lie Group Analysis of Differential Equations, Volume I: Symmetries, Exact Solutions, and Conservation Laws, CRC Press, Boca Raton, FL.

Olver,
P. J.
, 1986, Applications of Lie Groups to Differential Equations,
Springer-Verlag,
New York.

Muriel,
C.
, and
Romero,
J. L.
, 2001, “
New Methods of Reduction for Ordinary Differential Equations,” IMA J. Appl. Math.,
66(2), pp. 111–125.

[CrossRef]
Muriel,
C.
, and
Romero,
J. L.
, 2009, “
First Integrals, Integrating Factors and

*λ*-Symmetries of Second Order Differential Equations,” J. Phys. A: Math. Theor.,
42, p. 365207.

[CrossRef]
Muriel,
C.
, and
Romero,
J. L.
, 2008, “
Integrating Factors and

*λ*-Symmetries,” J. Nonlinear Math. Phys.,
15(3), pp. 300–309.

[CrossRef]
Muriel,
C.
, and
Romero,
J. L.
, 2012, “
Nonlocal Symmetries, Telescopic Vector Fields and *λ*-Symmetries of Ordinary Differential Equations,” SIGMA
8, p. 106.

Polat,
G. G.
, and
Özer,
T.
, 2016, “
On Analysis of Nonlinear Dynamical Systems Via Methods Connected With

*λ*-Symmetry,” Nonlinear Dyn.,
85(3), pp. 1571–1595.

[CrossRef]
Jacobi,
C. G. J.
, 1844, “
Sul principio dell'ultimo moltiplicatore, e suo come nuovo principio generale di meccanica,” G. Arcadico Sci. Lett. Arti,
99, pp. 129–146.

Jacobi,
C. G. J.
, 1844, “
Theoria novi multiplicatoris systemati aequationum differentialium vulgarium applicandi,” J. Reine Angrew. Math.,
27, pp. 199–268.

[CrossRef]
Jacobi,
C. G. J.
, 1845, “
Theoria novi multiplicatoris systemati aequationum differentialium vulgarium applicandi,” J. Reine Angrew. Math.,
29, pp. 213–279; 333–376.

[CrossRef]
Lie,
S.
, 1874, “
Veralgemeinerung und neue Verwerthung der Jacobischen Multiplikatortheorie,” Christiania Forh., pp. 255–274.

Nucci,
M. C.
, 2005, “
Jacobi Last Multiplier and Lie Symmetries: A Novel Application of an Old Relationship,” J. Nonlinear Math. Phys.,
12(2), pp. 284–304.

[CrossRef]
Nucci,
M. C.
, and
Leach,
P. G. L.
, 2007, “
Lagrangians Galore,” J. Math. Phys.,
48(12), p. 123510.

[CrossRef]
Nucci,
M. C.
, and
Tamizhmani,
K. M.
, 2010, “
Using an Old Method of Jacobi to Derive Lagrangians: A Nonlinear Dynamical System With Variable Coefficients,” Il Nuovo Cimento B,
125(3), pp. 255–269.

Nucci,
M. C.
, and
Leach,
P. G. L.
, 2009, “
An Old Method of Jacobi to Find Lagrangians,” J. Nonlinear Math. Phys.,
16(4), pp. 431–441.

[CrossRef]
Nucci,
M. C.
, 2009, “
Seeking (and Finding) Lagrangians,” Theor. Math. Phys.,
160(1), pp. 1014–1021.

[CrossRef]
Yaşar,
E.
, and
Reis,
M.
, 2010, “
Application of Jacobi Method and Integrating Factors to a Class of Painlevé–Gambier Equations,” J. Phys. A: Math. Theor.,
43(29), p. 295202.

[CrossRef]
Chandrasekar,
V. K.
,
Senthilvelan,
M.
, and
Lakshmanan,
M.
, 2005, “
Extended Prelle–Singer Method and Integrability/Solvability of a Class of Nonlinear *n*th Order Ordinary Differential Equations,” J. Math. Phys.,
12(Suppl. 1), pp. 184–201.

Musielak,
Z. E.
, 2008, “
Standard and Non-Standard Lagrangians for Dissipative Dynamical Systems With Variable Coefficients,” J. Phys. A: Math. Theor.,
41(38), p. 055205.

[CrossRef]
Cieśliński,
J. L.
, and
Nikiciuk,
T.
, 2010, “
A Direct Approach to the Construction of Standard and Non-Standard Lagrangians for Dissipative-Like Dynamical Systems With Variable Coefficients,” J. Phys. A: Math. Theor.,
43(17), p. 175205.

[CrossRef]
Carinena,
J. F.
,
Ranada,
M. F.
, and
Santander,
M.
, 2005, “
Lagrangian Formalism for Nonlinear Second-Order Riccati Systems: One-Dimensional Integrability and Two-dimensional Superintegrability,” J. Math. Phys.,
46(6), p. 062703.

[CrossRef]
Chandrasekar,
V. K.
,
Senthilvelan,
M.
, and
Lakshmanan,
M.
, 2005, “
On the Complete Integrability and Linearization of Certain Second Order Nonlinear Ordinary Differential Equations,” Proc. R. Soc. London, Ser. A,
461(2060), pp. 2451–2476.

[CrossRef]
Duarte,
L. G. S.
,
Duarte,
S. E. S.
, and
Moreira,
I. C.
, 1987, “
One-Dimensional Equations With the Maximum Number of Symmetry Generators,” J. Phys. A: Math. Gen.,
20(11), pp. L701–L704.

[CrossRef]
Leach,
P. G. L.
,
Feix,
M. R.
, and
Bouquet,
S.
, 1988, “
Analysis and Solution of a Nonlinear Second-Order Differential Equation Through Rescaling and Through a Dynamical Point of View,” J. Math. Phys.,
29(12), pp. 2563–2569.

[CrossRef]
Lemmer,
R. L.
, and
Leach,
P. G. L.
, 1993, “
The Painleve Test, Hidden Symmetries and the Equation

*y*″ +

*yy*′ +

*Ky*^{3} = 0,” J. Phys. A: Math. Gen.,
26(19), pp. 5017–5024.

[CrossRef]
Mahomed,
F. M.
, 2007, “
Symmetry Group Classification of Ordinary Differential Equations: Survey of Some Results,” Math. Methods Appl. Sci.,
30(16), pp. 1995–2012.

[CrossRef]
Golubev,
V. V.
, 1950, Lectures on Analytical Theory of Differential Equations,
Gostekhizdat,
Moscow, Russia.

Chisholm,
J. S. R.
, and
Common,
A. K.
, 1987, “
A Class of Second-Order Differential Equations and Related First-Order Systems,” J. Phys. A: Math. Gen.,
20(16), pp. 5459–5472.

[CrossRef]
Moreira,
I. C.
, 1984, “
Lie Symmetries for the Reduced Three-Wave,” Hadronic J.,
7, p. 475.

Leach,
P. G. L.
, 1985, “
First Integrals for the Modified Emden Equation
q
̈
+
α
(
t
)
q
̇
+
q
n
=
0,” J. Phys.,
26(10), p. 2510.

Chandrasekhar,
S.
, 1957, An Introduction to the Study of Stellar Structure,
Dover,
New York.

Dixon,
J. M.
, and
Tuszynski,
J. A.
, 1990, “
Solutions of a Generalized Emden Equation and Their Physical Significance,” Phys. Rev. A,
41(8), pp. 4166–4173.

[CrossRef] [PubMed]
McVittie,
G. C.
, 1933, “
The Mass-Particle in an Expanding Universe,” Mon. Not. R. Astron. Soc.,
93, pp. 325–339.

[CrossRef]
Erwin,
V. J.
,
Ames,
W. F.
, and
Adams,
E.
, 1984, “
Wave Phenomenon: Modern Theory and Applications,” Wave Phenomenon: Modern Theory and Applications,
C. Rogers
, and
J. B. Moodie
, eds.,
North-Holland,
Amsterdam, The Netherlands.

Pandey,
S. N.
,
Bindu,
P. S.
,
Senthilvelan,
M.
, and
Lakshmanan,
M.
, 2009, “
A Group Theoretical Identification of Integrable Equations in the Liénard-Type Equation
x
̈
+
f
(
x
)
x
̇
+
g
(
x
)
=
0—II: Equations Having Maximal Lie Point Symmetries,” J. Math. Phys.,
50(10), p. 102701.

[CrossRef]
Chandrasekar,
V. K.
,
Senthilvelan,
M.
, and
Lakshmanan,
M.
, 2007, “
On the General Solution for the Modified Emden-Type Equation
x
̈
+
α
x
x
̇
+
β
x
3
=
0,” J. Phys. A: Math. Theor.,
40(18), pp. 4717–4727.

[CrossRef]
Iacono,
R.
, 2008, “
Comment ‘On the General Solution for the Modified Emden-Type Equation
x
̈
+
α
x
x
̇
+
β
x
3
=
0’,” J. Phys. A: Math. Theor.,
41(6), p. 068001.

[CrossRef]
Chandrasekar,
V. K.
,
Pandey,
S. N.
,
Senthilvelan,
M.
, and
Lakshmanan,
M.
, 2005, “
Application of Extended Prelle–Singer Procedure to the Generalized Modified Emden Type Equation,” Chaos Solutions Fractals,
26(5), pp. 1399–1406.

[CrossRef]
Mohanasubha,
R.
,
Chandrasekar,
V. K.
,
Senthilvelan,
M.
, and
Lakshmanan,
M.
, 2014, “
Interplay of Symmetries, Null Forms, Darbou Polynomials, Integrating Factors and Jacobi Multipliers in Integrable Second-Order Differential Equations,” Proc. R. Soc. A,
470(2163).

Bhuvaneswari,
A.
,
Kraenkel,
R.
, and
Senthilvelan,
M.
, 2012, “
Application of the Lambda-Symmetries Approach and Time Independent Integral of the Modified Emden Equation,” Nonlinear Anal.: Real World Appl.,
13(2), pp. 1102–1114.

[CrossRef]