Agrawal,
O. P.
,
Tenreiro,
J. A.
, and
Sabatier,
J.
, 2004, “
Introduction,” Nonlinear Dyn.,
38, pp. 1–2.

[CrossRef]
Podlubny,
I.
, 1999, Fractional Differential Equations,
Academic Press,
London.

Zhao,
D.
,
Yang,
X.
, and
Srivastava,
H. M.
, 2015, “
Some Fractal Heat-Transfer Problems With Local Fractional Calculus,” Therm. Sci.,
19(5), pp. 1867–1871.

[CrossRef]
Yang,
X.
,
Machdo,
J.
, and
Hristor,
J.
, 2016, “
Nonlinear Dynamics for Local Fractional Burgers' Equation Arising in Fractal Flow,” Nonlinear Dyn.,
84(1), pp. 3–7.

[CrossRef]
Ji,
J.
, 2015, “
Discrete Fractional Diffusion Equation With a Source Term,” J. Comput. Complexity Appl.,
1(1), pp. 10–14.

Wu,
F.
, and
Liu,
J. F.
, 2016, “
Discrete Fractional Creep Model of Salt Rock,” J. Comput. Complexity Appl.,
2(1), pp. 1–6.

Zhou,
X.
,
Liu,
B.
, and
Song,
Y.
, 2016, “
Numerical Method for Differential-Algebraic Equations of Fractional Order,” J. Comput. Complexity Appl.,
1(2), pp. 54–63.

Tatari,
M.
,
Dehghan,
M.
, and
Razzaghi,
M.
, 2007, “
Application of the Adomian Decomposition Method for the Fokker–Planck Equation,” Math. Comput. Model.,
45(5), pp. 639–650.

[CrossRef]
Metzler,
R.
,
Barkai,
E.
, and
Klafter,
J.
, 1999, “
Anomalous Diffusion and Relaxation Close to Thermal Equilibrium: A Fractional Fokker–Planck Equation Approach,” Phys. Rev. Lett.,
82(18), pp. 3563–3567.

[CrossRef]
Tsallis,
C.
, and
Lenzi,
E. K.
, 2002, “
Anomalous Diffusion: Nonlinear Fractional Fokker–Planck Equation,” Chem. Phys.,
284(1), pp. 341–347.

[CrossRef]
Silva,
A. T.
,
Lenzi,
E.
,
Evangelista,
L.
,
Lenzi,
M.
, and
da Silva,
L.
, 2007, “
Fractional Nonlinear Diffusion Equation Solutions and Anomalous Diffusion,” Phys. A,
375(1), pp. 65–71.

[CrossRef]
Frank,
T. D.
, 2004, “
Autocorrelation Functions of Nonlinear Fokker–Planck Equations,” Eur. Phys. J. B,
37(2), pp. 139–142.

[CrossRef]
Wu,
C. H.
, and
Lu,
L. Z.
, 2010, “
Implicit Numerical Approximation Scheme for the Fractional Fokker–Planck Equation,” Appl. Math. Comput.,
216(7), pp. 1945–1955.

Deng,
W.
, 2007, “
Numerical Algorithm for the Time Fractional Fokker–Planck Equation,” J. Comput. Phys.,
227(2), pp. 1510–1522.

[CrossRef]
Deng,
W.
, 2008, “
Finite Element Method for the Space and Time Fractional Fokker–Planck Equation,” SIAM J. Numer. Anal.,
47(1), pp. 204–226.

[CrossRef]
Mei,
S. L.
, and
Zhu,
D. H.
, 2013, “
Interval Shannon Wavelet Collocation Method for Fractional Fokker–Planck Equation,” Adv. Math. Phys.,
2013(5), pp. 1–12.

[CrossRef]
Chen,
S.
,
Liu,
F.
,
Zhuang,
P.
, and
Anh,
V.
, 2009, “
Finite Difference Approximations for the Fractional Fokker–Planck Equation,” Appl. Math. Model.,
33(1), pp. 256–273.

[CrossRef]
Deng,
K. Y.
, and
Deng,
W. H.
, 2012, “
Finite Difference/Predictor-Corrector Approximations for the Space and Time Fractional Fokker–Planck Equation,” Appl. Math. Lett.,
25(11), pp. 1815–1821.

[CrossRef]
Vong,
S.
, and
Wang,
Z.
, 2015, “
A High Order Compact Finite Difference Scheme for Time Fractional Fokker–Planck Equations,” Appl. Math. Lett.,
43(1), pp. 38–43.

[CrossRef]
Zhao,
Z. G.
,
Li,
C. P.
,
Mendes,
R. S.
, and
Pedron,
I. T.
, 2012, “
A Numerical Approach to the Generalized Nonlinear Fractional Fokker–Planck Equation,” Comput. Math. Appl.,
64(10), pp. 3075–3089.

[CrossRef]
Du,
J.
, and
Cui,
M.
, 2010, “
An Efficient Computational Method for Linear Fifth-Order Two-Point Boundary Value Problems,” Comput. Math. Appl.,
59(2), pp. 903–911.

[CrossRef]
Cui,
M.
, and
Lin,
Y.
, 2009, Nonlinear Numerical Analysis in the Reproducing Kernel Spaces,
Nova Science Publisher,
New York.

Lin,
Y.
, and
Zhou,
Y.
, 2009, “
Solving Nonlinear Pseudoparabolic Equations With Nonlocal Boundary Conditions in Reproducing Kernel Space,” Numer. Algorithms,
52(2), pp. 173–186.

[CrossRef]
Jiang,
W.
, and
Lin,
Y.
, 2010, “
Anti-Periodic Solutions for Rayleigh-Type Equations Via the Reproducing Kernel Hilbert Space Method,” Commun. Nonlinear. Sci. Numer. Simul.,
15(7), pp. 1754–1758.

[CrossRef]
Du,
H.
,
Zhao,
G. L.
, and
Zhao,
C. Y.
, 2014, “
Reproducing Kernel Method for Solving Fredholm Integro-Differential Equations With Weakly Singularity,” J. Comput. Appl. Math.,
255, pp. 122–132.

[CrossRef]
Arqub,
O. A.
,
Al-Smadi,
M.
, and
Momani,
S.
, 2013, “
Solving Fredholm Integro-Differential Equations Using Reproducing Kernel Hilbert Space Method,” Appl. Math. Comput.,
219(17), pp. 8938–8948.

Wang,
Y. L.
,
Du,
M. J.
,
Tan,
F. G.
,
Li,
Z. Y.
, and
Nie,
T. F.
, 2013, “
Using Reproducing Kernel for Solving a Class of Fractional Partial Differential Equation With Non-Classical Conditions,” Appl. Math. Comput.,
219(11), pp. 5918–5925.

Jiang,
W.
, and
Tian,
T.
, 2015, “
Numerical Solution of Nonlinear Volterra Integro-Differential Equations of Fractional Order by the Reproducing Kernel Method,” Appl. Math. Model.,
39(16), pp. 4871–4876.

[CrossRef]
Geng,
F.
, and
Cui,
M.
, 2012, “
A Reproducing Kernel Method for Solving Nonlocal Fractional Boundary Value Problems,” Appl. Math. Comput.,
25(5), pp. 818–823.

Diethelm,
K.
, 2004, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type,
Springer,
New York.

Caputo,
M.
, 1967, “
Linear Models of Dissipation Whose

*Q* is Almost Frequency Independent,” J. R. Astron. Soc.,
13(5), pp. 529–539.

[CrossRef]
Wu,
B.
, and
Lin,
Y.
, 2012, Applied Reproducing Kernel Theory,
Science Publisher.

Young,
N.
, 1988, An Introduction to Hilbert Space,
Cambridge University Press,
Cambridge, UK.