0
Research Papers

A Simple Shear and Torsion-Free Beam Model for Multibody Dynamics

[+] Author and Article Information
Juan Carlos García Orden

ETSI Caminos,
Technical University of Madrid,
c/Profesor Aranguren s/n,
Madrid 28040, Spain
e-mail: juancarlos.garcia@upm.es

Javier Cuenca Queipo

Special Projects Department,
INECO,
Paseo de la Habana, 138,
Madrid 28036, Spain
e-mail: javier.queipo@ineco.com

1Corresponding author.

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received September 14, 2015; final manuscript received February 4, 2017; published online April 17, 2017. Assoc. Editor: Firdaus Udwadia.

J. Comput. Nonlinear Dynam 12(5), 051006 (Apr 17, 2017) (8 pages) Paper No: CND-15-1291; doi: 10.1115/1.4036116 History: Received September 14, 2015; Revised February 04, 2017

This paper describes a very simple beam model, amenable to be used in multibody applications, for cases where the effects of torsion and shear are negligible. This is the case of slender rods connecting different parts of many space mechanisms, models useful in polymer physics, computer animation, etc. The proposed new model follows a lumped parameter method that leads to a rotation-free formulation. Axial stiffness is represented by a standard nonlinear truss model, while bending is modeled with a force potential. Several numerical experiments are carried out in order to assess accuracy, which is usually the main drawback of this type of approach. Results reveal a remarkable accuracy in nonlinear dynamical problems, suggesting that the proposed model is a valid alternative to more sophisticated approaches.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Sadler, J. P. , and Sandor, G. N. , 1973, “ A Lumped Parameter Approach to Vibration and Stress Analysis of Elastic Linkages,” J. Eng. Ind., 95(2), pp. 549–557. [CrossRef]
Sadler, J. P. , 1975, “ On the Analytical Lumped-Mass Model of an Elastic Four-Bar Mechanism,” J. Eng. Ind., 97(2), pp. 561–565. [CrossRef]
Wang, Y. , and Huston, R. L. , 1994, “ A Lumped Parameter Method in the Nonlinear Analysis of Flexible Multibody Systems,” Comput. Struct., 50(3), pp. 421–432. [CrossRef]
Wittbrodt, E. , Adamiec-Wójcik, I. , and Wojciech, S. , 2006, Dynamics of Flexible Multibody Systems. Rigid Finite Element Method, Springer-Verlag, Berlin.
Shabana, A. A. , 2010, Computational Dynamics, Wiley, Chichester, UK.
Crisfield, M. A. , and Moita, G. F. , 1996, “ A Unified Co-Rotational Framework for Solids, Shells and Beams,” Int. J. Numer. Methods Eng., 33(20–22), pp. 2969–2992.
Mayo, J. , and Domínguez, J. , 1996, “ Geometrically Non-Linear Formulation of Flexible Multibody Systems in Terms of Beam Elements: Geometric Stiffness,” Comput. Struct., 59(6), pp. 1039–1050. [CrossRef]
Liu, J. Y. , and Hong, J. Z. , 2004, “ Geometric Stiffening Effect on Rigid-Flexible Coupling Dynamics of an Elastic Beam,” J. Sound Vib., 278(4–5), pp. 1147–1162. [CrossRef]
Simo, J. C. , 1985, “ A Finite Strain Beam Formulation. The Three-Dimensional Dynamic Problem—Part I,” Comput. Methods Appl. Mech. Eng., 49(1), pp. 55–70. [CrossRef]
Simó, J. C. , and Vu-Quoc, L. , 1986, “ On the Dynamics of Flexible Beams Under Large Overall Motions—The Planar Case,” ASME J. Appl. Mech., 53(4), pp. 849–863. [CrossRef]
Simó, J. C. , and Vu-Quoc, L. , 1986, “ A Three-Dimensional Finite-Strain Rod Model—Part II: Computational Aspects,” Comput. Methods Appl. Mech. Eng., 58(1), pp. 79–116. [CrossRef]
Simó, J. C. , and Vu-Quoc, L. , 1988, “ On the Dynamics in Space of Rods Undergoing Large Motions—A Geometrically Exact Approach,” Comput. Methods Appl. Mech. Eng., 66(2), pp. 125–161. [CrossRef]
Han, S. , and Bauchau, O. A. , 2015, “ Nonlinear Three-Dimensional Beam Theory for Flexible Multibody Dynamics,” Multibody Syst. Dyn., 34(3), pp. 211–242. [CrossRef]
Shabana, A. A. , 1996, “ Finite Element Incremental Approach and Exact Rigid Body Inertia,” ASME J. Mech. Des., 118(2), pp. 171–178. [CrossRef]
Escalona, J. L. , Hussien, H. A. , and Shabana, A. A. , 1998, “ Application of the Absolute Nodal Coordinate Formulation to Multibody System Dynamics,” J. Sound Vib., 214(5), pp. 833–851. [CrossRef]
Omar, M. A. , and Shabana, A. A. , 2001, “ A Two Dimensional Shear Deformable Beam for Large Rotation and Deformation Problems,” J. Sound Vib., 243(3), pp. 565–576. [CrossRef]
Romero, I. , 2008, “ A Comparison of Finite Elements for Nonlinear Beams: The Absolute Nodal Coordinate and Geometrically Exact Formulations,” Multibody Syst. Dyn., 20(1), pp. 51–68. [CrossRef]
Bauchau, O. A. , Han, S. , Mikkola, A. , and Matikainen, M. K. , 2014, “ Comparison of the Absolute Nodal Coordinate and Geometrically Exact Formulations for Beams,” Multibody Syst. Dyn., 32(1), pp. 67–85. [CrossRef]
Mata, P. L. , Barbat, A. H. , Oller, S. , and Boroschek, R. , 2008, Inelastic Analysis of Geometrically Exact Rods (Monograph Series in Earthquake Engineering), CIMNE, Barcelona, Spain.
Romero, I. , Urrecha, M. , and Cyron, C. J. , 2014, “ A Torsion-Free Non-Linear Beam Model,” Int. J. Non Linear Mech., 58(0), pp. 1–10. [CrossRef]
Duan, Y. , Li, D. , and Frank Pai, P. , 2013, “ Geometrically Exact Physics-Based Modeling and Computer Animation of Highly Flexible 1D Mechanical Systems,” Graphical Models, 75(2), pp. 56–68. [CrossRef]
Phaal, R. , and Calladine, C. R. , 1992, “ A Simple Class of Finite Elements for Plate and Shell Problems—I: Elements for Beams and Thin Flat Plates,” Int. J. Numer. Methods Eng., 35(5), pp. 955–977. [CrossRef]
Flores, F. G. , and Oñate, E. , 2006, “ Rotation-Free Finite Element for the Non-Linear Analysis of Beams and Axisymmetric Shells,” Comput. Methods Appl. Mech. Eng., 195(41–43), pp. 5297–5315. [CrossRef]
Battini, J.-M. , 2008, “ A Rotation-Free Corotational Plane Beam Element for Non-Linear Analyses,” Int. J. Numer. Methods Eng., 75(6), pp. 672–689. [CrossRef]
Zhou, Y. X. , and Sze, K. Y. , 2013, “ A Rotation-Free Beam Element for Beam and Cable Analyses,” Finite Elem. Anal. Des., 64, pp. 79–89. [CrossRef]
Bauchau, O. A. , Betsch, P. , Cardona, A. , Gerstmayr, J. , Jonker, B. , Masarati, P. , and Sonneville, V. , 2016, “ Validation of Flexible Multibody Dynamics Beam Formulations Using Benchmark Problems,” Multibody Syst. Dyn., 37(1), pp. 29–48. [CrossRef]
Bonet, J. , and Wood, R. D. , 2008, Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd ed., Cambridge University Press, Cambridge, UK.
Mattiasson, K. , 1981, “ Numerical Results From Large Deflection Beam and Frame Problems Analysed by Means of Elliptic Integrals,” Int. J. Numer. Methods Eng., 17(1), pp. 145–153. [CrossRef]
Mayo, J. M. , García-Vallejo, D. , and Domínguez, J. , 2004, “ Study of the Geometric Stiffening Effect: Comparison of Different Formulations,” Multibody Syst. Dyn., 11(4), pp. 321–341. [CrossRef]
Simeon, B. , 2013, Computational Flexible Multibody Dynamics. A Differential-Algebraic Approach, Springer-Verlag, Berlin.
Tian, Q. , Zhang, Y. , Chen, L. , and Flores, P. , 2009, “ Dynamics of Spatial Flexible Multibody Systems With Clearance and Lubricated Spherical Joints,” Comput. Struct., 87(13–14), pp. 913–929. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Single beam element

Grahic Jump Location
Fig. 2

Beam composed by several elements

Grahic Jump Location
Fig. 3

Simply supported beam with different discretizations: (a) n = 1, (b) n = 3, and (c)n = 5, 7, 9, …

Grahic Jump Location
Fig. 4

Normalized deflections for different discretizations

Grahic Jump Location
Fig. 5

Single beam element, internal forces

Grahic Jump Location
Fig. 6

Linear tests. Convergence of deflection at the load location.

Grahic Jump Location
Fig. 7

Nonlinear test, from Ref. [28]

Grahic Jump Location
Fig. 8

Nonlinear test. Load–deflection curves.

Grahic Jump Location
Fig. 9

Nonlinear test. Convergence of deflections for PL2/EI = 10.

Grahic Jump Location
Fig. 10

Nonlinear test: Z-shaped cantilever

Grahic Jump Location
Fig. 11

Nonlinear test: Z-shaped cantilever. Load versus tip vertical deflection.

Grahic Jump Location
Fig. 12

Spinning beam. Endpoint deflection versus time, 40 elements.

Grahic Jump Location
Fig. 13

Spinning beam. Convergence of maximum endpoint deflection, Δt = 0.01 s.

Grahic Jump Location
Fig. 14

Flexible slider–crank. Deflection of the flexible rod midpoint.

Grahic Jump Location
Fig. 15

Flexible slider–crank. Convergence of midpoint deflection during four turns, Δt = 0.0001 s.

Grahic Jump Location
Fig. 16

Flexible spatial double pendulum, from Ref. [31]

Grahic Jump Location
Fig. 17

Flexible double pendulum. X-displacement of point B versus time with ten elements, integrated with trapezoidal rule, Δt = 0.001 s.

Grahic Jump Location
Fig. 18

Flexible double pendulum. X-displacement of point B versus time with ten elements, E = 0.06 GPa, Δt = 0.001 s.

Grahic Jump Location
Fig. 19

Flexible double pendulum. Convergence of the X-displacement of point B, E = 0.06 GPa, Δt = 0.001 s.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In