Cruceanu,
C.
, 2012, “
Train Braking,” Reliability and Safety in Railway,
X. Perpinya
, ed.,
InTech,
Rijeka, Croatia, pp. 29–74.

Aboubakr,
A. K.
,
Volpi,
M.
,
Shabana,
A. A.
,
Cheli,
F.
, and
Melzi,
S.
, 2016, “
Implementation of Electronically Controlled Pneumatic Brake Formulation in Longitudinal Train Dynamics Algorithms,” Proc. Inst. Mech. Eng., Part K,
230(4), pp. 505–526.

Abdol-Hamid,
K. S.
,
Limbert,
D. E.
,
Gauthier,
R. G.
, Chapman, G. A., and Vaughn, L. E., 1986, “
Simulation of a Freight Train Air Brake System,” ASME Paper No. 86-WA/RT-15.

Wu,
Q.
,
Spiryagin,
M.
, and
Cole,
C.
, 2016, “
Longitudinal Train Dynamics: An Overview,” Veh. Syst. Dyn.,
54(12), pp. 1688–1714.

[CrossRef]
Murtaza,
M. A.
, and
Garg,
B. L.
, 1993, “
Railway Air Brake Simulation: An Empirical Approach,” Proc. Inst. Mech. Eng., Part F,
207(F1), pp. 51–56.

[CrossRef]
Nasr,
A.
, and
Mohammadi,
S.
, 2010, “
The Effects of Train Brake Delay Time on In-Train Forces,” Proc. Inst. Mech. Eng., Part F,
224(6), pp. 523–534.

[CrossRef]
Wu,
Q.
,
Luo,
S.
, and
Cole,
C.
, 2014, “
Longitudinal Dynamics and Energy Analysis for Heavy Haul Trains,” J. Mod. Transp.,
22(3), pp. 127–136.

[CrossRef]
Oprea,
R. A.
,
Cruceanu,
C.
, and
Spiroiu,
M. A.
, 2013, “
Alternative Friction Models for Braking Train Dynamics,” Veh. Syst. Dyn.,
51(3), pp. 460–480.

[CrossRef]
Specchia,
S.
,
Afshari,
A.
,
Shabana,
A.
, and
Caldwell,
N.
, 2013, “
A Train Air Brake Force Model: Locomotive Automatic Brake Valve and Brake Pipe Flow Formulations,” Proc. Inst. Mech. Eng., Part F,
227(1), pp. 19–37.

[CrossRef]
Afshari,
A.
,
Specchia,
S.
,
Shabana,
A.
, and
Caldwell,
N.
, 2013, “
A Train Air Brake Force Model: Car Control Unit and Numerical Results,” Proc. Inst. Mech. Eng., Part F,
227(1), pp. 38–55.

[CrossRef]
Johnson,
M. R.
,
Booth,
G. F.
, and
Mattoon,
D. W.
, 1986, “
Development of Practical Techniques for the Simulation of Train Air Brake Operation,” ASME Paper No. 86-WA/RT-4.

Pugi,
L.
,
Malvezzi,
M.
,
Allotta,
B.
, Banchi, L., and Presciani, P., 2004, “
A Parametric Library for the Simulation of a Union Internationale des Chemins de Fer (UIC) Pneumatic Braking System,” Proc. Inst. Mech. Eng., Part F,
218(2), pp. 117–132.

[CrossRef]
Piechowiak,
T.
, 2009, “
Pneumatic Train Brake Simulation Method,” Veh. Syst. Dyn.,
47(12), pp. 1473–1492.

[CrossRef]
Wei,
W.
,
Hu,
Y.
,
Wu,
Q.
, Zhao, X., Zhang, J., and Zhang, Y., 2016, “
An Air Brake Model for Longitudinal Train Dynamics Studies,” Veh. Syst. Dyn.,
55(4), pp. 517–533.

[CrossRef]
Wei,
W.
, and
Lin,
Y.
, 2009, “
Simulation of a Freight Train Brake System With 120 Valves,” Proc. Inst. Mech. Eng., Part F,
223(1), pp. 85–92.

[CrossRef]
Belforte,
P.
,
Cheli,
F.
,
Diana,
G.
, and
Melzi,
S.
, 2008, “
Numerical and Experimental Approach for the Evaluation of Severe Longitudinal Dynamics of Heavy Freight Trains,” Veh. Syst. Dyn.,
46(s1), pp. 937–955.

[CrossRef]
Cantone,
L.
, 2011, “
TrainDy: The New Union Internationale Des Chemins de Fer Software for Freight Train Interoperability,” Proc. Inst. Mech. Eng., Part F,
225(1), pp. 57–70.

Benson,
R. S.
,
Horlock,
J. H.
, and
Winterbone,
D. E.
, 1982, Thermodynamics and Gas Dynamics of Internal-Combustion Engines, Vol.
1,
Clarendon Press,
Oxford, UK.

Sun,
S.
, 2014, “
Research on Heavy Haul Train Longitudinal Impulse Dynamics,” Ph.D. thesis, Southwest Jiaotong University, Chengdu, China.

Wu,
Q.
, and
Cole,
C.
, 2015, “
Computing Schemes for Longitudinal Train Dynamics: Sequential, Parallel and Hybrid,” ASME J. Comput. Nonlinear Dyn.,
10(6), p. 064502.

[CrossRef]
Shabana,
A.
,
Aboubakr,
A.
, and
Ding,
L.
, 2012, “
Use of the Non-Inertial Coordinates in the Analysis of Train Longitudinal Forces,” ASME J. Comput. Nonlinear Dyn.,
7(1), p. 011001.

[CrossRef]
Bharath,
S.
,
Nakra,
B. C.
, and
Gupta,
K. N.
, 1990, “
Mathematical Model of a Railway Pneumatic Brake System With Varying Cylinder Capacity Effects,” ASME J. Dyn. Syst., Meas., Control,
112(9), pp. 456–462.

[CrossRef]
Pugi,
L.
,
Palazzolo,
A.
, and
Fioravanti,
D.
, 2008, “
Simulation of Railway Brake Plants: An Application to SAADKMS Freight Wagons,” Proc. Inst. Mech. Eng., Part F,
222(4), pp. 321–329.

[CrossRef]
Negrut,
D.
,
Serban,
R.
,
Mazhar,
H.
, and
Heyn,
T.
, 2014, “
Parallel Computing in Multibody System Dynamics: Why, When, and How,” ASME J. Comput. Nonlinear Dyn.,
9(4), p. 041007.

[CrossRef]
Sugiyama,
H.
,
Yamashita,
S.
, and
Suda,
Y.
, 2010, “
Curving Simulation of Ultralow-Floor Light Rail Vehicles With Independently Rotating Wheelsets,” ASME Paper No. IMECE2010-37286.

Wu,
Q.
,
Spiryagin,
M.
, and
Cole,
C.
, 2017, “
Parallel Computing Scheme for Three-Dimensional Long Train System Dynamics,” ASME J. Comput. Nonlinear Dyn.,
12(4), p. 044502.

[CrossRef]
Eberhard,
P.
,
Dignath,
F.
, and
Kubler,
L.
, 2003, “
Parallel Evolutionary Optimization of Multibody Systems With Application to Railway Dynamics,” Multibody Syst. Dyn.,
9(2), pp. 143–164.

[CrossRef]
Wu,
Q.
,
Cole,
C.
, and
Spiryagin,
M.
, 2016, “
Parallel Computing Enables Whole-Trip Train Dynamics Optimizations,” ASME J. Comput. Nonlinear Dyn.,
11(4), p. 044503.

[CrossRef]
Central Queensland University, 2015, “
High Performance Computing,” Central Queensland University, Rockhampton, Queensland, Australia, accessed Nov. 25, 2015,

https://www.cqu.edu.au/hpc
Balaji,
P.
,
Bland,
W.
,
Gropp,
W.
, Latham, R., Lu, H., Pena, A. J., Raffenetti, K., Thakur, R., and Zhang, J., 2014, “
MPICH User's Guide, Version 3.1.1,” Mathematics and Computer Science Division Argonne National Laboratory, Argonne, IL.