0
research-article

Cartilage Stiffness and Knee Loads Distribution: a Discrete Model for Landing Impacts

[+] Author and Article Information
Lindsay Moir

Department of Mechanical Engineering Gannon University 109 University Square Erie, PA 16541
moir001@knights.gannon.edu

Davide Piovesan

Department of Mechanical Engineering Gannon University 109 University Square Erie, PA 16541
piovesan001@gannon.edu

Anne Schmitz

Department of Mechanical Engineering Gannon University 109 University Square Erie, PA 16541
schmitz005@gannon.edu

1Corresponding author.

ASME doi:10.1115/1.4036483 History: Received October 11, 2016; Revised March 15, 2017

Abstract

Musculoskeletal simulations can be used to determine loads experienced by the ligaments and cartilage during athletic motions such as impact from a drop landing, hence investigating mechanisms for injury. An open-source discrete element knee model was used to perform a forward dynamic simulation of the impact phase of a drop landing. Since the cartilage contact loads are largely depending on the elastic moduli of the cartilage, the analysis was performed for varying moduli: nominal stiffness based on the literature, stiffness increased by 10%, and decreased by 10%. As the cartilage stiffness increased, the medial compartment contact load decreased. Conversely, the lateral compartment load and MCL force increased, causing a shift in the load distribution. However, these changes were insignificant compared to the overall magnitude of the contact forces (<4% change). The ACL, PCL, and LCL loads remain unchanged between varying cartilage stiffness values. The medial compartment bears a majority of the load (860 N in medial compartment versus 540 N in lateral) during the impact phase of a drop landing, which agrees with physiological data that the medial side of the knee is more affected by osteoarthritis than the lateral side. This is one of the few models to quantify this load distribution and show the results are invariant to changes in cartilage stiffness.

Copyright (c) 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In