0
Research Papers

Analytical and Numerical Investigations of Stable Periodic Solutions of the Impacting Oscillator With a Moving Base and Two Fenders

[+] Author and Article Information
Barbara Blazejczyk-Okolewska

Division of Dynamics,
Lodz University of Technology,
Stefanowskiego 1/15,
Lodz 90-924, Poland
e-mail: okolbar@p.lodz.pl

Krzysztof Czolczynski

Division of Dynamics,
Lodz University of Technology,
Stefanowskiego 1/15,
Lodz 90-924, Poland

Andrzej Okolewski

Institute of Mathematics,
Lodz University of Technology,
Wolczanska 215,
Lodz 90-924, Poland

1Corresponding author.

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received November 17, 2016; final manuscript received March 26, 2017; published online September 7, 2017. Assoc. Editor: Przemyslaw Perlikowski.

J. Comput. Nonlinear Dynam 12(6), 061008 (Sep 07, 2017) (11 pages) Paper No: CND-16-1567; doi: 10.1115/1.4036548 History: Received November 17, 2016; Revised March 26, 2017

A vibrating system with impacts, which can be applied to model the cantilever beam with a mass at its end and two-sided impacts against a harmonically moving frame, is investigated. The objective of this study is to determine in which regions of parameters characterizing system, the motion of the oscillator is periodic and stable. An analytical method to obtain stable periodic solutions to the equations of motion on the basis of Peterka's approach is presented. The results of analytical investigations have been compared to the results of numerical simulations. The ranges of stable periodic solutions determined analytically and numerically with bifurcation diagrams of spectra of Lyapunov exponents show a very good conformity. The locations of stable periodic solution regions of the system with a movable frame and two-sided impacts differ substantially from the locations of stable periodic solution regions for the system: (i) with a movable frame and one-sided impacts and (ii) with an immovable frame and two-sided impacts.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Blazejczyk-Okolewska, B. , Czolczynski, K. , and Kapitaniak, T. , 2004, “ Classification Principles of Types of Mechanical Systems With Impacts—Fundamental Assumptions and Rules,” Eur. J. Mech. A, Solids, 23(3), pp. 517–537. [CrossRef]
Blazejczyk-Okolewska, B. , Czolczynski, K. , and Kapitaniak, T. , 2005, “ Determination of Geometrical Conditions of Assembly and Impacts in Classified Types of Mechanical Systems With Impacts,” Eur. J. Mech. A, Solids, 24(2), pp. 277–291. [CrossRef]
Blazejczyk-Okolewska, B. , and Serweta, W. , 2013, “ A Method to Determine Structural Patterns of Mechanical Systems With Impacts,” Math. Prob. Eng., 2013, p. 757980.
Blazejczyk-Okolewska, B. , and Czolczynski, K. , 1998, “ Some Aspects of the Dynamical Behaviour of the Impact Force Generator,” Chaos, Solitons Fractals, 9(8), pp. 1307–1320. [CrossRef]
Chin, W. , Ott, E. , Nusse, H. E. , and Grebogi, C. , 1994, “ Grazing Bifurcations in Impact Oscillators,” Phys. Rev. E, 50(6), pp. 4427–4444. [CrossRef]
Isomaki, H. M. , Von Boehm, J. , and Raty, R. , 1985, “ Devil's Attractors and Chaos of a Driven Impact Oscillator,” Phys. Lett. A, 107(8), pp. 343–346. [CrossRef]
Nordmark, A. B. , 1991, “ Non-Periodic Motion Caused by Grazing Incidence in an Impact Oscillator,” J. Sound Vib., 145(2), pp. 279–297. [CrossRef]
Peterka, F. , and Vacik, J. , 1992, “ Transition to Chaotic Motion in Mechanical Systems With Impacts,” J. Sound Vib., 154(1), pp. 95–115. [CrossRef]
Shaw, S. W. , and Holmes, P. J. , 1983, “ A Periodically Forced Piecewise Linear Oscillator,” J. Sound Vib., 90(1), pp. 129–155. [CrossRef]
Serweta, W. , Okolewski, A. , Blazejczyk-Okolewska, B. , Czolczynski, K. , and Kapitaniak, T. , 2015, “ Mirror Hysteresis and Lyapunov Exponents of Impact Oscillator With Symmetrical Soft Stops,” Int. J. Mech. Sci., 101–102, pp. 89–98. [CrossRef]
Thompson, J. M. T. , and Ghaffari, R. , 1982, “ Chaos After Period-Doubling Bifurcations in the Resonance of an Impact Oscillator,” Phys. Lett. A, 91, pp. 296–299. [CrossRef]
Andreaus, U. , Placidi, L. , and Rega, G. , 2011, “ Soft Impact Dynamics of a Cantilever Beam: Equivalent SDOF Model Versus Infinite-Dimensional System,” Proc. Inst. Mech. Eng., Part C, 225(10), pp. 2444–2456. [CrossRef]
Andreaus, U. , Chiaia, B. , and Placidi, L. , 2013, “ Soft-Impact Dynamics of Deformable Bodies,” Continuum Mech. Thermodyn., 25(1), pp. 375–398. [CrossRef]
Andreaus, U. , Placidi, L. , and Rega, G. , 2013, “ Microcantilever Dynamics in Tapping Mode Atomic Force Microscopy Via Higher Eigenmodes Analysis,” J. Appl. Phys., 113(22), pp. 1–14. [CrossRef]
Andreaus, U. , Baragatti, B. , and Placidi, L. , 2016, “ Experimental and Numerical Investigations of the Responses of a Cantilever Beam Possibly Contacting a Deformable and Dissipative Obstacle Under Harmonic Excitation,” Int. J. Nonlinear Mech., 80, pp. 96–106. [CrossRef]
de Souza, S. L. T. , Wiercigroch, M. , Caldas, I. L. , and Balthazar, J. M. , 2008, “ Suppressing Grazing Chaos in Impacting System by Structural Nonlinearity,” Chaos, Solitons Fractals, 38(3), pp. 864–869. [CrossRef]
Emans, J. , Wiercigroch, M. , and Krivtsov, A. M. , 2005, “ Cumulative Effect of Structural Nonlinearities: Chaotic Dynamics of Cantilever Beam System With Impacts,” Chaos, Solitons Fractals, 23(5), pp. 1661–1670. [CrossRef]
Ing, J. , Pavlovskaia, E. , Wiercigroch, M. , and Banerjee, S. , 2008, “ Experimental Study of Impact Oscillator With One-Sided Elastic Constraint,” Philos. Trans. R. Soc. A, 366(1866), pp. 679–704. [CrossRef]
Blazejczyk-Okolewska, B. , Czolczynski, K. , and Kapitaniak, T. , 2010, “ Hard Versus Soft Impacts in Oscillatory Systems Modeling,” Commun. Nonlinear Sci. Numer. Simul., 15(5), pp. 1358–1367. [CrossRef]
Ho, J. H. , Nguyen, V. D. , and Woo, K. C. , 2011, “ Nonlinear Dynamics of a New Electro-Vibro-Impact System,” Nonlinear Dyn., 63(1), pp. 35–49. [CrossRef]
Kaharaman, A. , and Blankenship, G. W. , 1997, “ Experiments on Nonlinear Dynamic Behavior of an Oscillator With Clearance and Periodically Time-Varying Parameters,” ASME J. Appl. Mech., 64(1), pp. 217–226. [CrossRef]
Kaharaman, A. , and Singh, R. , 1992, “ Dynamics of an Oscillator With Both Clearance and Continuous Non-Linearities,” J. Sound Vib., 153(1), pp. 180–185. [CrossRef]
Kim, Y. B. , and Noah, S. T. , 1990, “ Stability and Bifurcation Analysis of Oscillators With Piecewise–Linear Characteristics: A General Approach,” ASME J. Appl. Mech., 58(2), pp. 545–553. [CrossRef]
Luo, G. W. , Zhu, X. F. , and Shi, Y. Q. , 2015, “ Dynamics of a Two-Degree-of Freedom Periodically-Forced System With a Rigid Stop: Diversity and Evolution of Periodic-Impact Motions,” J. Sound Vib., 334, pp. 338–362. [CrossRef]
Blazejczyk-Okolewska, B. , and Peterka, F. , 1998, “ An Investigation of the Dynamic System With Impacts,” Chaos, Solitons Fractals, 9(8), pp. 1321–1338. [CrossRef]
Blazejczyk-Okolewska, B. , 2000, “ Study of the Impact Oscillator With Elastic Coupling of Masses,” Chaos, Solitons Fractals, 11(15), pp. 2487–2492. [CrossRef]
Warminski, J. , Lenci, S. , Cartmell, M. P. , Rega, G. , and Wiercigroch, M. , 2012, Nonlinear Dynamics Phenomena in Mechanics (Solid Mechanics and Its Applications), Vol. 181, Springer-Verlag, Berlin. [CrossRef]
Brzeski, P. , Kapitaniak, T. , and Perlikowski, P. , 2015, “ Experimental Verification of a Hybrid Dynamical Model of the Church Bell,” Int. J. Impact Eng., 80, pp. 177–184. [CrossRef]
Stefanski, A. , and Kapitaniak, T. , 2003, “ Estimation of the Dominant Lyapunov Exponent of Non-Smooth Systems on the Basis of Maps Synchronization,” Chaos, Solitons Fractals, 15(2), pp. 233–244. [CrossRef]
Peterka, F. , 1970, “ An Investigation of the Motion of Impact Dampers: Theory of the Fundamental Impact Motion,” Strojnicky Cas., 21, pp. 457–478.
Aidanpaa, J. O. , and Gupta, R. B. , 1993, “ Periodic and Chaotic Behaviour of a Threshold-Limited Two-Degree-of-Freedom System,” J. Sound Vib., 165(2), pp. 305–327. [CrossRef]
Czolczynski, K. , 2004, “ On the Existence of a Stable Periodic Solution of an Impacting Oscillator With Damping,” Chaos, Solitons Fractals, 19(5), pp. 1291–1311. [CrossRef]
Czolczynski, K. , and Kapitaniak, T. , 2004, “ On the Existence of a Stable Periodic Solution of an Impacting Oscillator With Two Fenders,” Int. J. Bifurcation Chaos Appl. Sci. Eng., 14(09), pp. 3115–3134. [CrossRef]
Czolczynski, K. , Blazejczyk-Okolewska, B. , and Okolewski, A. , 2016, “ Analytical and Numerical Investigations of Stable Periodic Solutions of the Impacting Oscillator With a Moving Base,” Int. J. Mech. Sci., 115–116, pp. 325–338. [CrossRef]
Pun, D. , Lau, S. L. , Law, S. S. , and Cao, D. Q. , 1998, “ Forced Vibration Analysis of a Multidegree Impact Vibrator,” J. Sound Vib., 213(3), pp. 447–466. [CrossRef]
Luo, G. W. , Lv, X. H. , and Shi, Y. Q. , 2014, “ Vibro-Impact Dynamics of a Two-Degree-of-Freedom Periodically-Forced System With a Clearance: Diversity and Parameter Matching of Periodic-Impact Motions,” Int. J. Nonlinear Mech., 65, pp. 173–195. [CrossRef]
Müller, P. C. , 1995, “ Calculation of Lyapunov Exponents for Dynamic Systems With Discontinuities,” Chaos, Solitons Fractals, 5(9), pp. 1671–1681. [CrossRef]
Benettin, G. , Galgani, L. , Giorgilli, A. , and Strelcyn, J. M. , 1980, “ Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems; A Method for Computing All of Them—Part I: Theory,” Meccanica 15(1), pp. 9–20. [CrossRef]
Benettin, G. , Galgani, L. , Giorgilli, A. , and Strelcyn, J. M. , 1980, “ Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems; A Method for Computing All of Them—Part II: Numerical Application,” Meccanica, 15(1), pp. 21–30. [CrossRef]
Jin, L. , Lu, Q. S. , and Twizell, E. H. , 2006, “ A Method for Calculating the Spectrum of Lyapunov Exponents by Local Maps in Non-Smooth Impact-Vibrating Systems,” J. Sound Vib., 298(4–5), pp. 1019–1033. [CrossRef]
de Souza, S. L. T. , and Caldas, I. L. , 2004, “ Calculation of Lyapunov Exponents in Systems With Impacts,” Chaos, Solitons Fractals, 19(3), pp. 569–579. [CrossRef]
Galvanetto, U. , 2000, “ Numerical Computation of Lyapunov Exponents in Discontinuous Maps Implicitly Defined,” Comput. Phys. Commun., 131(1–2), pp. 1–9. [CrossRef]
Li, Q. , Chen, Y. , Wei, Y. , and Lu, Q. , 2011, “ The Analysis of the Spectrum of Lyapunov Exponents in a Two-Degree-of-Freedom Vibro-Impact System,” Int. J. Nonlinear Mech., 46(1), pp. 197–203. [CrossRef]
Li, Q. H. , and Tan, J. Y. , 2011, “ Lyapunov Exponent Calculation of a Two-Degree-of-Freedom Vibro-Impact System With Symmetrical Rigid Stops,” Chin. Phys. B, 20, pp. 1–9. http://iopscience.iop.org/article/10.1088/1674-1056/20/4/040505
Luo, G. , Ma, L. , and Lv, X. , 2009, “ Dynamic Analysis and Suppressing Chaotic Impacts of a Two-Degree-of-Freedom Oscillator With a Clearance,” Nonlinear Anal.: Real World Appl., 10(2), pp. 756–778. [CrossRef]
Yue, Y. , 2011, “ The Dynamics of a Symmetric Impact Oscillator Between Two Rigid Stops,” Nonlinear Anal.: Real World Appl., 12(1), pp. 741–750. [CrossRef]
Yue, Y. , and Xie, J. , 2009, “ Lyapunov Exponents and Coexistence of Attractors in Vibro-Impact Systems With Symmetric Two-Sided Rigid Constraints,” Phys. Lett. A, 373(23–24), pp. 2041–2046. [CrossRef]
Andreaus, U. , Placidi, L. , and Rega, G. , 2010, “ Numerical Simulation of the Soft Contact Dynamics of an Impacting Bilinear Oscillator,” Commun. Nonlinear Sci. Numer. Simul., 15(9), pp. 2603–2616. [CrossRef]
Kobrinskii, A. E. , 1969, Dynamics of Mechanisms With Elastic Connections and Impact Systems, Iliffe Books, London.
Elaydi, S. , 2005, An Introduction to Difference Equations, Springer-Verlag, New York.
Peterka, F. , and Blazejczyk-Okolewska, B. , 2005, “ Some Aspects of the Dynamical Behavior of the Impact Damper,” J. Vib. Control, 11(4), pp. 459–479. [CrossRef]
Balachandra Rao, S. , and Anuradha, H. R. , 1996, Differential Equations With Applications and Programs, Universities Press, Hyderabad, India.
Serweta, W. , Okolewski, A. , Blazejczyk-Okolewska, B. , Czolczynski, K. , and Kapitaniak, T. , 2014, “ Lyapunov Exponents of Impact Oscillators With Hertz's and Newton's Contact Models,” Int. J. Mech. Sci., 89, pp. 194–206. [CrossRef]
Parker, T. S. , and Chua, L. O. , 1989, Practical Numerical Algorithms for Chaotic Systems, Springer-Verlag, New York. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Impacting oscillator with damping and kinematic external excitation: (a) dimensional form and (b) dimensionless form

Grahic Jump Location
Fig. 2

Regions in which periodic solutions with impacts exist for kr = 0.6 and γ = 0.05: (a) n = 1 and (b) n = 3

Grahic Jump Location
Fig. 3

Regions of existence of periodic solutions with impacts, which do not cross the base for kr = 0.6 and γ = 0.05: (a) n = 1 and (b) n = 3

Grahic Jump Location
Fig. 4

Undisturbed (u) and disturbed (d) trajectory of the impacting oscillator with two fenders and a moving base; example for n = 1

Grahic Jump Location
Fig. 5

Regions of existence of stable periodic solutions with impacts for kr = 0.6 and γ = 0.05: (a) n = 1 and (b) n = 3

Grahic Jump Location
Fig. 6

Regions of existence of stable periodic solutions with impacts for kr = 0.6: (a) γ = 0, (b) γ = 0.05, (c) γ = 0.1, and (d) γ = 0.05 (zoom of Fig. 6(b))

Grahic Jump Location
Fig. 7

Time series for kr = 0.6, γ = 0.05, and d = 1.6: (a) symmetric periodic motion for η = 0.82 (z = 2/3 and pL = pU = 1), (b) symmetric periodic motion for η = 0.99 (z = 2/1 and pL = pU = 1), (c) asymmetric periodic motion for η = 0.7865 (z = 1/2, pL = 1, and pU = 0), (d) asymmetric periodic motion for η = 0.7865 (z = 1/2, pL = 0, and pU = 1), (e) asymmetric periodic motion for η = 0.93 (z = 1/1, pL = 1, and pU = 0), and (f) asymmetric periodic motion for η = 0.93 (z = 1/1, pL = 0, and pU = 1)

Grahic Jump Location
Fig. 8

Bifurcation diagrams of relative displacement w (a) and the corresponding spectra of Lyapunov exponents λ1, λ2 (b) for the impacting oscillator with a moving base for the system (1b); kr = 0.6, γ = 0.05, and d = 1.6 (gray—decreasing η and black—increasing η)

Grahic Jump Location
Fig. 9

Basins of attraction at the frequency: η = 0.7865 (a), η = 0.785 (b), and η = 0.93 (c) for kr = 0.6, γ = 0.05, and d = 1.6

Grahic Jump Location
Fig. 10

Regions of existence of stable periodic solutions with impacts for γ = 0.05: (a) kr = 0.8, (b) kr = 0.9, (c) kr = 0.95, and (d) kr = 0.99

Grahic Jump Location
Fig. 11

Time diagrams (a)–(d) of the motion with impacts and (e) basins of attraction for kr = 0.99, γ = 0.05, η = 10, and d = 50

Grahic Jump Location
Fig. 12

Regions of existence of stable periodic solutions with impacts for kr = 0.99: (a) γ = 0.0 and (b) γ = 0.1

Grahic Jump Location
Fig. 13

Bifurcation diagrams of relative displacement w (a) and the corresponding spectra of Lyapunov exponents λ1, λ2 (b) for the impacting oscillator with a moving base for the system (1b); kr = 0.99, γ = 0.05, and d = 0.4 (gray—decreasing η and black—increasing η)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In