Atanacković,
T. M.
,
Pilipović,
S.
,
Stanković,
B.
, and
Zorica,
D.
, 2014, Fractional Calculus With Applications in Mechanics: Vibrations and Diffusion Processes,
ISTE, London/Wiley,
Hoboken, NJ.

Baleanu,
D.
,
Diethelm,
K.
,
Scalas,
E.
, and
Trujillo,
J. J.
, 2016, Fractional Calculus: Models and Numerical Methods, 2nd ed.,
World Scientific,
Singapore.

Hilfer,
R.
, ed., 2000, Applications of Fractional Calculus in Physics,
World Scientific,
River Edge, NJ.

Podlubny,
I.
, 1999, Fractional Differential Equations,
Academic Press,
San Diego, CA.

Diethelm,
K.
, 2010, The Analysis of Fractional Differential Equations,
Springer,
Berlin.

Li,
C.
, and
Zeng,
F.
, 2015, Numerical Methods for Fractional Calculus,
Chapman and Hall/CRC,
London.

Garrappa,
R.
, and
Popolizio,
M.
, 2011, “
On Accurate Product Integration Rules for Linear Fractional Differential Equations,” J. Comput. Appl. Math.,
235(5), pp. 1085–1097.

[CrossRef]
Garrappa,
R.
, and
Popolizio,
M.
, 2011, “
Generalized Exponential Time Differencing Methods for Fractional Order Problems,” Comput. Math. Appl.,
62(3), pp. 876–890.

[CrossRef]
Doha,
E. H.
,
Bhrawy,
A. H.
, and
Ezz-Eldien,
S. S.
, 2011, “
A Chebyshev Spectral Method Based on Operational Matrix for Initial and Boundary Value Problems of Fractional Order,” Comput. Math. Appl.,
62(5), pp. 2364–2373.

[CrossRef]
Esmaeili,
S.
,
Shamsi,
M.
, and
Luchko,
Y.
, 2011, “
Numerical Solution of Fractional Differential Equations With a Collocation Method Based on Müntz Polynomials,” Comput. Math. Appl.,
62(3), pp. 918–929.

[CrossRef]
Yan,
Y.
,
Pal,
K.
, and
Ford,
N. J.
, 2014, “
Higher Order Numerical Methods for Solving Fractional Differential Equations,” BIT Numer. Math.,
54(2), pp. 555–584.

[CrossRef]
Ford,
N. J.
,
Morgado,
M. L.
, and
Rebelo,
M.
, 2015, “
A Nonpolynomial Collocation Method for Fractional Terminal Value Problems,” J. Comput. Appl. Math.,
275, pp. 392–402.

[CrossRef]
Firoozjaee,
M. A.
,
Yousefi,
S. A.
,
Jafari,
H.
, and
Baleanu,
D.
, 2015, “
On a Numerical Approach to Solve Multi-Order Fractional Differential Equations With Initial/Boundary Conditions,” ASME J. Comput. Nonlinear Dyn.,
10(6), p. 061025.

[CrossRef]
Esmaeili,
S.
,
Shamsi,
M.
, and
Dehghan,
M.
, 2013, “
Numerical Solution of Fractional Differential Equations Via a Volterra Integral Equation Approach,” Cent. Eur. J. Phys.,
11(10), pp. 1470–1481.

Zayernouri,
M.
, and
Karniadakis,
G. E.
, 2013, “
Fractional Sturm–Liouville Eigen-Problems: Theory and Numerical Approximation,” J. Comput. Phys.,
252, pp. 495–517.

[CrossRef]
Ford,
N. J.
,
Morgado,
M. L.
, and
Rebelo,
M.
, 2013, “
Nonpolynomial Collocation Approximation of Solutions to Fractional Differential Equations,” Fractional Calculus Appl. Anal.,
16(4), pp. 874–891.

Eslahchi,
M. R.
,
Dehghan,
M.
, and
Parvizi,
M.
, 2014, “
Application of the Collocation Method for Solving Nonlinear Fractional Integro-Differential Equations,” J. Comput. Appl. Math.,
257, pp. 105–128.

[CrossRef]
Doha,
E. H.
,
Bhrawy,
A. H.
,
Baleanu,
D.
, and
Hafez,
R. M.
, 2014, “
A New Jacobi Rational-Gauss Collocation Method for Numerical Solution of Generalized Pantograph Equations,” Appl. Numer. Math.,
77, pp. 43–54.

[CrossRef]
Huang,
C.
,
Jiao,
Y.
,
Wang,
L.-L.
, and
Zhang,
Z.
, 2016, “
Optimal Fractional Integration Preconditioning and Error Analysis of Fractional Collocation Method Using Nodal Generalized Jacobi Functions,” SIAM J. Numer. Anal.,
54(6), pp. 3357–3387.

[CrossRef]
Baffet,
D.
, and
Hesthaven,
J. S.
, 2017, “
A Kernel Compression Scheme for Fractional Differential Equations,” SIAM J. Numer. Anal.,
55(2), pp. 496–520.

[CrossRef]
Brunner,
H.
, 2004, Collocation Methods for Volterra Integral and Related Functional Equations,
Cambridge University Press,
Cambridge, UK.

Cao,
Y.
,
Herdman,
T.
, and
Xu,
Y.
, 2003, “
A Hybrid Collocation Method for Volterra Integral Equations With Weakly Singular Kernels,” SIAM. J. Numer. Anal.,
41(1), pp. 364–381.

[CrossRef]
Pedas,
A.
, and
Tamme,
E.
, 2014, “
Numerical Solution of Nonlinear Fractional Differential Equations by Spline Collocation Methods,” J. Comput. Appl. Math.,
255, pp. 216–230.

[CrossRef]
Kolk,
M.
,
Pedas,
A.
, and
Tamme,
E.
, 2015, “
Modified Spline Collocation for Linear Fractional Differential Equations,” J. Comput. Appl. Math.,
283, pp. 28–40.

[CrossRef]
Abramowitz,
M.
, and
Stegun,
I. A.
, 1972, Handbook of Mathematical Functions,
Dover,
New York.

Esmaeili,
S.
, and
Milovanović,
G. V.
, 2014, “
Nonstandard Gauss–Lobatto Quadrature Approximation to Fractional Derivatives,” Fractional Calculus Appl. Anal.,
17(4), pp. 1075–1099.

Zayernouri,
M.
, and
Karniadakis,
G. E.
, 2014, “
Fractional Spectral Collocation Method,” SIAM J. Sci. Comput.,
36(1), pp. 40–62.

[CrossRef]
Garrappa,
R.
, 2015, “
Numerical Evaluation of Two and Three Parameter Mittag–Leffler Functions,” SIAM J. Numer. Anal.,
53(3), pp. 1350–1369.

[CrossRef]
Rossikhin,
Y. A.
, and
Shitikova,
M. V.
, 2010, “
Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Result,” ASME Appl. Mech. Rev.,
63(1), p. 010801.

[CrossRef]