0
Technical Brief

Superharmonic Resonance of Cross-Ply Laminates by the Method of Multiple Scales

[+] Author and Article Information
Hadj Youzera

Laboratoire des Structures et Matériaux Avancés dans le
Génie Civil et Travaux Publics,
Université de Sidi Bel Abbes,
Sidi Bel Abbes 22000, Algérie;
Department of Civil Engineering,
Université Mustapha Stambouli of Mascara,
Mascara 29000, Algeria

Sid Ahmed Meftah

Laboratoire des Structures et Matériaux Avancés dans le
Génie Civil et Travaux Publics,
Université de Sidi Bel Abbes,
Sidi Bel Abbes 22000, Algérie

El Mostafa Daya

Laboratoire d'Etude des Microstructures et de Mécanique
des Matériaux (LEM3),
Université de Lorraine,
UMR CNRS 7239,
Ile du Saulcy,
Metz Cedex 01 F-57045, France
e-mail: meftahs@yahoo.com; daya@univ-metz.fr

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received December 24, 2015; final manuscript received May 23, 2017; published online June 16, 2017. Assoc. Editor: Mohammad Younis.

J. Comput. Nonlinear Dynam 12(5), 054503 (Jun 16, 2017) (9 pages) Paper No: CND-15-1451; doi: 10.1115/1.4036914 History: Received December 24, 2015; Revised May 23, 2017

General differential equations of motion in nonlinear forced vibration analysis of multilayered composite beams are derived by using the higher-order shear deformation theories (HSDT's). Viscoelastic properties of fiber-reinforced plastic composite materials are considered according to the Kelvin–Voigt viscoelastic model for transversely isotropic composite materials. The method of multiple scales is employed to perform analytical frequency amplitude relationships for superharmonic resonance. Parametric study is conducted by considering various geometrical and material parameters, employing HSDT's and first-order deformation theory (FSDT).

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Emam, S. A. , and Nayfeh, A. H. , 2009, “ Postbuckling and Free Vibrations of Composite Beams,” Compos. Struct., 88(4), pp. 636–642. [CrossRef]
Belouettar, S. , Azrar, L. , Daya, E. M. , Laptev, V. , and Potier-Ferry, M. , 2008, “ Active Control of Nonlinear Vibration of Sandwich Piezoelectric Beams: A Simplified Approach,” Comput. Struct., 86(3–5), pp. 386–397. [CrossRef]
Reissner, E. , 1945, “ The Effect of Transverse Shear Deformation on the Bending of Elastic Plates,” ASME J. Appl. Mech., 12, pp. 69–76.
Mindlin, R. D. , 1951, “ Influence of Rotatory Inertia and Shear in Flexural Motions of Isotropic Elastic Plates,” ASME J. Appl. Mech., 18, pp. 1031–1036.
Pagano, N. J. , 1969, “ Exact Solutions for Composite Laminates in Cylindrical Bending,” J. Compos. Mater., 3(3), pp. 398–411. [CrossRef]
Timoshenko, S. P. , 1922, “ On the Transverse Vibration of Bars With Uniform Cross-Section,” Philos. Mag., 43(253), pp. 125–131. [CrossRef]
Reddy, J. N. , 1984, “ A Simple Higher-Order Theory of Laminated Composite Plate,” ASME J. Appl. Mech., 51(4), pp. 745–752. [CrossRef]
Touratier, M. , 1991, “ An Efficient Standard Plate Theory,” Int. J. Eng. Sci., 29(8), pp. 901–916. [CrossRef]
Afaq, K. S. , Karama, M. , and Mistou, S. , 2003, “ Un Nouveau Modèle Raffiné Pour les Structures Multicouches,” Comptes Rendues des 13éme Journées Nationales sur les Composites, Strasbourg, France, pp. 289–292.
Dwivedy, S. K. , Sahu, K. C. , and Babu, S. K. , 2007, “ Parametric Instability Region of Three Layered Soft-Cored Sandwich Beam Using Higher-Order Theory,” J. Sound Vib., 304(1–2), pp. 326–344. [CrossRef]
Zhen, W. , and Wanji, C. , 2008, “ An Assessment of Several Displacement-Based Theories for the Vibration and Stability Analysis of Laminated Composite and Sandwich Beams,” Compos. Struct., 84(4), pp. 337–349. [CrossRef]
Khare, R. K. , and Garg, A. A. , 2005, “ Free Vibration of Sandwich Laminates With Two Higher-Order Shear Deformable Facet Shell Element Models,” J. Sandwich Struct. Mater., 7(3), pp. 221–244. [CrossRef]
Araujo, A. L. , Mota Soares, C. M. , and Mota Soares, C. A. , 2010, “ Finite Element Model for Hybrid Active-Passive Damping Analysis of Anisotropic Laminated Sandwich Structures,” J. Sandwich Struct. Mater., 12(4), pp. 397–418. [CrossRef]
Nakra, B. C. , 1981, “ Vibration Control With Viscoelastic Material, II,” Shock Vib. Dig., 13, pp. 17–20. [CrossRef]
Nakra, B. C. , 1984, “ Vibration Control With Viscoelastic Material, III,” Shock Vib. Dig., 16(5), pp. 17–22.
Moser, K. , and Lumassegger, M. , 1988, “ Increasing the Damping of Flexural Vibrations of Laminated FPC Structures by Incorporation of Soft Intermediate Plies With Minimum Reduction of Stiffness,” Compos. Struct., 10(4), pp. 321–333. [CrossRef]
Vaswani, J. , Asnani, N. T. , and Nakara, B. C. , 1988, “ Vibration and Damping Analysis of Curved Sandwich Beams With a Visco-Elastic Core,” Compos. Struct., 10(3), pp. 231–245. [CrossRef]
Hajela, P. , and Lin, C. Y. , 1991, “ Optimal Design for Viscoelastically Damped Beam Structures,” ASME Appl. Mech. Rev., 44(11S), pp. S96–S106. [CrossRef]
He, S. , and Rao, M. D. , 1992, “ Prediction of Loss Factors of Curved Sandwich Beams,” J. Sound Vib., 159(1), pp. 101–113. [CrossRef]
Daya, E. M. , Azrar, L. , and Poitier-Ferry, M. , 2004, “ An Amplitude Equation for the Non-Linear Vibration of Viscoelastically Damped Sandwich Beams,” J. Sound Vib., 271(5–6), pp. 789–813. [CrossRef]
Bilasse, M. , Daya, E. M. , and Azrar, L. , 2010, “ Linear and Nonlinear Vibrations Analysis of Viscoelastic Sandwich Beams,” J. Sound Vib., 329(23), pp. 4950–4969. [CrossRef]
Youzera, H. , Meftah, S. A. , Challamel, N. , and Tounsi, A. , 2012, “ Nonlinear Damping and Forced Vibration Analysis of Laminated Composite Beams,” Composites, Part B, 43(3), pp. 1147–1154. [CrossRef]
Melo, J. D. D. , and Radford, D. W. , 2003, “ Viscoelastic Characterization of Transversely Isotropic Composite Laminate,” J. Compos. Mater., 37(2), pp. 129–145. [CrossRef]
Rachdaoui, M. S. , and Azrar, L. , 2010, “ Active Control of Secondary Resonances Piezoelectric Sandwich Beams,” Appl. Math. Comput., 216(11), pp. 3283–3302.
Alhazza, K. A. , Daqaq, M. F. , Nayfeh, A. H. , and Inman, D. J. , 2008, “ Non-Linear Vibrations of Parametrically Excited Cantilever Beams Subjected to Non-Linear Delayed-Feedback Control,” Int. J. Non-Linear Mech., 43(8), pp. 801–812. [CrossRef]
Khanin, R. , Cartmell, M. , and Gilbert, A. , 2000, “ A Computerised Implementation of the Multiple Scales Perturbation Method Using Mathematica,” Comput. Struct., 76(5), pp. 565–575. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Laminated composite beam geometry under uniform distributed load q(t)

Grahic Jump Location
Fig. 2

Nonlinear amplitude frequency responses of the stacking sequence (−45 deg/45 deg/−45 deg/45 deg/−45 deg/45 deg/−45 deg/45 deg) composite beam when ω is near ωl/3, according to different kinematical models

Grahic Jump Location
Fig. 3

Nonlinear amplitude frequency responses with Reddy model when ω is near ωl/3 according to the different stacking sequences of the composite beams

Grahic Jump Location
Fig. 4

Nonlinear amplitude frequency responses of the stacking sequence (−45 deg/45 deg/−45 deg/45 deg/−45 deg/45 deg/−45 deg/45 deg) composite beam with Reddy model when ω is near ωl/3 for different amplitude of excitation F

Grahic Jump Location
Fig. 5

Nonlinear amplitude frequency responses of the stacking sequence (−45 deg/45 deg/−45 deg/45 deg/−45 deg/45 deg/−45 deg/45 deg) composite beam with Reddy model when ω is near ωl/3 for different values of loss factor η1

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In