Caponetto,
R.
,
Dongola,
G.
,
Fortuna,
L.
, and
Petra's,
I.
, 2010, Fractional Order Systems: Modeling and Control Applications,
World Scientific,
Singapore.

Hilfer,
R.
, 2000, Applications of Fractional Calculus in Physics,
World Scientific,
River Edge, NJ.

Magin,
R. L.
, 2006, Fractional Calculus in Bioengineering,
Begell House,
Danbury, CT.

Podlubny,
I.
, 1999, Fractional Differential Equations (Mathematics in Science and Engineering), Vol.
198,
Academic Press,
San Diego, CA.

Baleanu,
D.
,
Joseph,
C.
, and
Mophou,
G.
, 2016, “
Low-Regret Control for a Fractional Wave Equation With Incomplete Data,” Adv. Differ. Equations,
240, pp. 1–20.

Petras,
I.
, 2011, “
An Effective Numerical Method and Its Utilization to Solution of Fractional Models Used in Bioengineering Applications,” Adv. Differ. Equations,
2011, pp. 1–14.

[CrossRef]
Driver,
R. D.
, 1977, Ordinary and Delay Differential Equations,
Springer-Verlag,
Berlin.

Wang,
N.
,
Hu,
W.
, and
Ding,
D.
, 2016, “
Nonlinear Dynamic Analysis of a Simplest Fractional-Order Delayed Memristive Chaotic System,” ASME J. Comput. Nonlinear Dyn.,
12(4), p. 041003.

Li,
M.
, and
Wang,
J.
, 2017, “
Finite Time Stability of Fractional Delay Differential Equations,” Appl. Math. Lett.,
64, pp. 170–176.

[CrossRef]
Moghaddam,
B. P.
,
Yaghoobi,
S.
, and
Machado,
J. T.
, 2016, “
An Extended Predictor-Corrector Algorithm for Variable-Order Fractional Delay Differential Equations,” ASME J. Comput. Nonlinear Dyn.,
11(6), p. 061001.

[CrossRef]
Baleanu,
D.
,
Magin,
R. L.
,
Bhalekar,
S.
, and
Daftardar-Gejji,
V.
, 2015, “
Chaos in the Fractional Order Nonlinear Bloch Equation With Delay,” Commun. Nonlinear Sci. Numer. Simul.,
25(1), pp. 41–49.

[CrossRef]
Cermak,
J.
,
Dosla,
Z.
, and
Kisela,
T.
, 2017, “
Fractional Differential Equations With a Constant Delay: Stability and Asymptotics of Solutions,” Appl. Math. Comput.,
298, pp. 336–350.

Chalishajar,
D. N.
, 2015, “
Trajectory Controllability of Second Order Nonlinear Integro-Differential System: An Analytical and a Numerical Estimation,” Differ. Equations Dyn. Syst.,
23(4), pp. 467–481.

[CrossRef]
Bin,
M.
, and
Liu,
Y.
, 2013, “
Trajectory Controllability of Semilinear Differential Evolution Equations With Impulses and Delay,” Open J. Appl. Sci.,
3(01), pp. 37–43.

[CrossRef]
Klamka,
J.
,
Czornik,
A.
,
Niezabitowski,
M.
, and
Babiarz,
A.
, 2015, “
Trajectory Controllability of Semilinear Systems With Delay,” Asian Conference on Intelligent Information and Database Systems (ACIIDS), Bali, Indonesia, Mar. 23–25, Vol.
9011, pp. 313–323.

Chalishajar,
D. N.
,
George,
R. K.
,
Nandakumaran,
A. K.
, and
Acharya,
F. S.
, 2010, “
Trajectory Controllability of Nonlinear Integro-Differential System,” J. Franklin Inst.,
347(7), pp. 1065–1075.

[CrossRef]
Malik,
M.
, and
George,
R. K.
, 2016, “
Trajectory Controllability of the Nonlinear Systems Governed by Fractional Differential Equations,” Differ. Equations Dyn. Syst., epub.

Govindaraj,
V.
,
Malik,
M.
, and
George,
R. K.
, 2016, “
Trajectory Controllability of Fractional Dynamical Systems,” J. Control Decis.,
4(2), pp. 114–130.

Muthukumar,
P.
, and
Ganesh Priya,
B.
, 2015, “
Numerical Solution of Fractional Delay Differential Equation by Shifted Jacobi Polynomials,” Int. J. Comput. Math.,
94(3), pp. 471–492.

[CrossRef]
Rahimkhani,
P.
,
Ordokhani,
Y.
, and
Babolian,
E.
, 2017, “
A New Operational Matrix Based on Bernoulli Wavelets for Solving Fractional Delay Differential Equations,” Numer. Algorithms,
74(1), pp. 223–245.

[CrossRef]
Sherif,
M. N.
, 2016, “
Numerical Solution of System of Fractional Delay Differential Equations Using Polynomial Spline Functions,” Appl. Math.,
7, pp. 518–526.

[CrossRef]
Saeed,
U.
, and
Rehman,
M.
, 2015, “
Modified Chebyshev Wavelet Methods for Fractional Delay Type Equations,” Appl. Math. Comput.,
264, pp. 431–442.

Bhalekar,
S.
, and
Daftardar-Gejji,
V.
, 2011, “
A Predictor-Corrector Scheme for Solving Nonlinear Delay Differential Equations of Fractional Order,” J. Fractional Calculus Appl.,
1(5), pp. 525–529.

http://fcag-egypt.com/journals/jfca/Vol1_Papers/05_Vol.%201.%20July%202011,%20No.5,%20pp.%201-9..pdf
Wang,
Z.
, 2013, “
A Numerical Method for Delayed Fractional-Order Differential Equations,” J. Appl. Math.,
2013, pp. 1–7.

Wang,
Z.
,
Huang,
X.
, and
Zhou,
J.
, 2013, “
A Numerical Method for Delayed Fractional-Order Differential Equations: Based on G-L Definition,” Appl. Math. Inf. Sci.,
7(2L), pp. 525–529.

[CrossRef]
Moghaddam,
P. B.
, and
Mostaghim,
S. Z.
, 2013, “
A Numerical Method Based on Finite Difference for Solving Fractional Delay Differential Equations,” J. Taibah Univ. Sci.,
7(3), pp. 120–127.

[CrossRef]
Moghaddam,
P. B.
, and
Mostaghim,
S. Z.
, 2017, “
Modified Finite Difference Method for Solving Fractional Delay Differential Equations,” Bol. Soc. Parana. Mat.,
35(2), pp. 49–58.

[CrossRef]
Demir,
D. D.
,
Bildik,
N.
, and
Sinir,
B. G.
, 2014, “
Linear Dynamical Analysis of Fractionally Damped Beams and Rods,” J. Eng. Math.,
85(1), pp. 131–147.

[CrossRef]
Seredyńska,
M.
, and
Hanyga,
A.
, 2005, “
Nonlinear Differential Equations With Fractional Damping With Applications to the 1DOF and 2DOF Pendulum,” Acta Mech.,
176(3), pp. 169–183.

[CrossRef]
Wang,
X.
,
Guo,
X.
, and
Tang,
G.
, 2013, “
Anti-Periodic Fractional Boundary Value Problems for Nonlinear Differential Equations of Fractional Order,” J. Appl. Math. Comput.,
41(1), pp. 367–375.

Ahmad,
B.
, and
Nieto,
J. J.
, 2011, “
Anti-Periodic Fractional Boundary Value Problems,” Comput. Math. Appl.,
62(3), pp. 1150–1156.

[CrossRef]
Nirmala,
R. J.
,
Balachandran,
K.
,
Rodríguez-Germa,
L.
, and
Trujillo,
J. J.
, 2016, “
Controllability of Nonlinear Fractional Delay Dynamical Systems,” Rep. Math. Phys.,
77(1), pp. 87–104.

[CrossRef]
Mesbahi,
A.
,
Haeri,
M.
,
Nazari,
M.
, and
Butcher,
E. A.
, 2015, “
Fractional Delayed Damped Mathieu Equation,” Int. J. Control,
88(3), pp. 622–630.

[CrossRef]