Olver,
P. J.
, 1986, Applications of Lie Groups to Differential Equations,
Springer,
New York.

[CrossRef]
Ovsiannikov,
L. V.
, 1982, Group Analysis of Differential Equations,
Academic Press,
New York.

Lie,
S.
, 1881, “
On Integration of a Class of Linear Partial Differential Equations by Means of Definite Integrals,” Arch. Math. Logic,
6(3) pp. 328–368.

Bluman,
G. W.
, and
Kumei,
S.
, 1989, Symmetries and Differential Equations,
Springer,
New York.

[CrossRef]
Ibragimov,
N. H.
, 1994, Handbook of Lie Group Analysis of Differential Equations, Vol.
1,
CRC Press,
Boca Raton, FL.

Ibragimov,
N. H.
, 1995, Handbook of Lie Group Analysis of Differential Equations, Vol.
2,
CRC Press,
Boca Raton, FL.

Ibragimov,
N. H.
, 1996, Handbook of Lie Group Analysis of Differential Equations, Vol.
3,
CRC Press,
Boca Raton, FL.

Liu,
H. Z.
, and
Geng,
Y. X.
, 2013, “
Symmetry Reductions and Exact Solutions to the Systems of Carbon Nanotubes Conveying Fluid,” J. Differ. Equations,
254(5), pp. 2289–2303.

[CrossRef]
Craddock,
M.
, and
Lennox,
K.
, 2012, “
Lie Symmetry Methods for Multi-Dimensional Parabolic PDEs and Diffusions,” J. Differ. Equations,
252(1), pp. 56–90.

[CrossRef]
Kumar,
S.
,
Singh,
K.
, and
Gupta,
R. K.
, 2012, “
Painlevé Analysis, Lie Symmetries and Exact Solutions for (2 + 1)-Dimensional Variable Coefficients Broer-Kaup Equations,” Commun. Nonlinear Sci. Numer. Simul.,
17, pp. 1529–1541.

Inc,
M.
,
Aliyu,
A. I.
, and
Yusu,
A.
, 2017, “
Solitons and Conservation Laws to the Resonance Nonlinear Shrödinger's Equation With Both Spatio-Temporal and Inter-Modal Dispersions,” Int. J. Light Electron. Opt.,
142, pp. 509–552.

[CrossRef]
Inc,
M.
,
Aliyu,
A. I.
,
Yusuf,
A.
, and
Baleanu,
D.
, 2017, “
New Solitary Wave Solutions and Conservation Laws to the Kudryashov-Sinelshchikov Equation,” Int. J. Light Electron. Opt.,
142, pp. 665–673.

[CrossRef]
Baleanu,
D.
,
Inc,
M.
,
Aliyu,
A. I.
, and
Yusuf,
A.
, 2017, “
Optical Solitons, Nonlinear Self-Adjointness and Conservation Laws for the Cubic Nonlinear Shrödinger's Equation With Repulsive Delta Potential,” Superlattices Microstruct.,
111, pp. 549–555.

Inc,
M.
,
Aliyu,
A. I.
, and
Yusuf,
A.
, 2017, “
Dark Optical, Singular Solitons and Conservation Laws to the Nonlinear Schrödinger's Equation With Spatio-Temporal Dispersion,” Mod. Phys. Lett. B,
31(14), p. 1750163.

[CrossRef]
Tchier,
F.
,
Yusuf,
A.
,
Aliyu,
A. I.
, and
Inc,
M.
, 2017, “
Soliton Solutions and Conservation Laws for Lossy Nonlinear Transmission Line Equation,” Superlattices Microstruct.,
107, pp. 320–336.

[CrossRef]
Inc,
M.
,
Aliyu,
A. I.
, and
Yusuf,
A.
, 2017, “
Traveling Wave Solutions and Conservation Laws of Some Fifth-Order Nonlinear Equations,” Eur. Phys. J. Plus,
132(5), p. 224.

[CrossRef]
Tchier,
F.
,
Aliyu,
A. I.
,
Yusuf,
A.
, and
Inc,
M.
, 2017, “
Dynamics of Solitons to the Ill-Posed Boussinesq Equation,” Eur. Phys. J. Plus,
132(3), p. 136.

[CrossRef]
Diethelm,
K.
, 2010, The Analysis of Fractional Differential Equations,
Springer,
Berlin.

[CrossRef]
Miller,
K. S.
, and
Ross,
B.
, 1993, An Introduction to the Fractional Calculus and Fractional Differential Equations,
Wiley,
New York.

Podlubny,
I.
, 1999, Fractional Differential Equations,
Academic Press,
San Diego, CA.

[PubMed] [PubMed]
Oldham,
K. B.
, and
Spanier,
J.
, 1974, The Fractional Calculus,
Academic Press,
San Diego, CA.

Kiryakova,
V.
, 1994, Generalised Fractional Calculus and Applications (Pitman Research Notes in Mathematics Series), Vol.
301, CRC Press, Boca Raton, FL.

El-Sayed,
A. M. A.
, and
Gaber,
M.
, 2006, “
The Adomian Decomposition Method for Solving Partial Differential Equations of Fractal Order in Finite Domains,” Phys. Lett. A,
359(3), pp. 175–182.

[CrossRef]
Chen,
Y.
, and
An,
H. L.
, 2008, “
Numerical Solutions of Coupled Burgers Equations With Time- and Space-Fractional Derivatives,” Appl. Math. Comput.,
200(1), pp. 87–95.

Gazizov,
R. K.
, and
Kasatkin,
A. A.
, 2013, “
Construction of Exact Solutions for Fractional Order Differential Equations by the Invariant Subspace Method,” Comput. Math. Appl.,
66(5), pp. 576–584.

[CrossRef]
Odibat,
Z.
, and
Momani,
S.
, 2008, “
A Generalized Differential Transform Method for Linear Partial Differential Equations of Fractional Order,” Appl. Math. Lett.,
21(2), pp. 194–199.

[CrossRef]
Li,
X.
, and
Chen,
W.
, 2010, “
Analytical Study on the Fractional Anomalous Diffusion in a Half-Plane,” J. Phys. A. Math. Theor.,
43(49), p. 495206.

[CrossRef]
He,
J. H.
, 2000, “
A Coupling Method of a Homotopy Technique and a Perturbation Technique for Non-Linear Problems,” Int. J. Non-Linear Mech.,
35(1), pp. 37–43.

[CrossRef]
Wu,
G.
, and
Lee,
E. W. M.
, 2010, “
Fractional Variational Iteration Method and Its Application,” Phys. Lett. A,
374(25), pp. 2506–2509.

[CrossRef]
Zhang,
S.
, and
Zhang,
H. Q.
, 2011, “
Fractional Sub-Equation Method and Its Applications to Nonlinear Fractional PDEs,” Phys. Lett. A,
375(7), pp. 1069–1073.

[CrossRef]
Guo,
S.
,
Mei,
L. Q.
,
Li,
Y.
, and
Sun,
Y. F.
, 2012, “
The Improved Fractional Sub-Equation Method and Its Applications to the Space-Time Fractional Differential Equations in Fluid Mechanics,” Phys. Lett. A,
376(4), pp. 407–411.

[CrossRef]
Lu,
B.
, 2012, “
Bäcklund Transformation of Fractional Riccati Equation and Its Applications to Nonlinear Fractional Partial Differential Equations,” Phys. Lett. A,
376(28–29), pp. 2045–2048.

[CrossRef]
Jumarie,
G.
, 2006, “
Modified Riemann-Liouville Derivative and Fractional Taylor Series of Non Differentiable Functions Further Results,” Comput. Math. Appl.,
51(9–10), pp. 1367–1376.

[CrossRef]
Jumarie,
G.
, 2010, “
Cauchy's Integral Formula Via the Modified Riemann-Liouville Derivative for Analytic Functions of Fractional Order,” Appl. Math. Lett.,
23(12), pp. 1444–1450.

[CrossRef]
Sahadevan,
R.
, and
Bakkyaraj,
T.
, 2012, “
Invariant Analysis of Time Fractional Generalized Burgers and Korteweg-de Vries Equations,” J. Math. Anal. Appl.,
393(2), pp. 341–347.

[CrossRef]
Wang,
G. W.
,
Liu,
X. Q.
, and
Zhang,
Y. Y.
, 2013, “
Lie Symmetry Analysis to the Time Fractional Generalized Fifth-Order KdV Equation,” Commun. Nonlinear Sci. Numer. Simul.,
18(9), pp. 2321–2326.

[CrossRef]
Gazizov,
R. K.
,
Kasatkin,
A. A.
, and
Lukashchuk,
Y. S.
, 2007, “
Continuous Transformation Groups of Fractional Differential Equations,” Vestn. USATU,
9, pp. 125–135.

Gazizov,
R. K.
,
Kasatkin,
A. A.
, and
Lukashchuk,
S. Y.
, 2009, “
Symmetry Properties of Fractional Diffusion Equations,” Phys. Scr.,
136, p. 014016.

Buckwar,
E.
, and
Luchko,
Y.
, 1998, “
Invariance of a Partial Differential Equation of Fractional Order Under the Lie Group of Scaling Transformations,” J. Math. Anal. Appl.,
227(1), pp. 81–97.

[CrossRef]
Djordjevic,
V. D.
, and
Atanackovic,
T. M.
, 2008, “
Similarity Solutions to Nonlinear Heat Conduction and Burgers/Korteweg-de Vries Fractional Equations,” J. Comput. Appl. Math.,
222(2), pp. 701–714.

[CrossRef]
Liu,
H. Z.
, 2013, “
Complete Group Classifications and Symmetry Reductions of the Fractional Fifth-Order KdV Types of Equations,” Stud. Appl. Math.,
131(4), pp. 317–330.

[CrossRef]
Olver,
P. J.
, 1993, Application of Lie Groups to Differential Equations,
Springer-Verlag,
New York.

[CrossRef]
Ibragimov,
N. H.
, 1999, Elementary Lie Group Analysis and Ordinary Differential Equations,
Wiley,
Chichester, UK.

Adem,
A. R.
, and
Khalique,
C. M.
, 2012, “
Symmetry Reductions, Exact Solutions and Conservation Laws of a New Coupled KdV System,” Commun. Nonlinear Sci. Numer. Simul.,
17(9), pp. 3465–3475.

[CrossRef]
Noether,
E.
, 1971, “
Invariante Variation Problems,” Transp. Theor. Stat. Phys.,
1(3), pp. 186–207.

[CrossRef]
Kara,
A. H.
, and
Mahomed,
F. M.
, 2006, “
Noether-Type Symmetries and Conservation Laws Via Partial Lagrangians,” Nonlinear Dyn,
45(3–4), pp. 367–383.

[CrossRef]
Anco,
S. C.
, and
Bluman,
G. W.
, 2002, “
Direct Construction Method for Conservation Laws of Partial Differential Equations. Part I: Examples of Conservation Law Classifications,” Eur. J. Appl. Math.,
13(5), pp. 545–566.

Ibragimov,
N. H.
, 2007, “
A New Conservation Theorem,” J. Math. Anal. Appl.,
333(1), pp. 311–328.

[CrossRef]
Calogero,
F.
, 1987, “
The Evolution Partial Differential Equation,” J. Math. Phys.,
28(3), pp. 538–555.

[CrossRef]
Daniel,
M.
, and
Sahadevan,
R.
, 1988, “
On the Weak Painleve Property and Linearization of the Evolution Equation,” Phys. Lett. A,
130(1), pp. 19–21.

[CrossRef]
Kiryakova,
V.
, 1994, Generalised Fractional Calculus and Applications (Pitman Research Notes in Mathematics), Vol.
301,
Wiley,
Hoboken, NJ.

Wang,
G. W.
, and
Xu,
T. Z.
, 2014, “
Invariant Analysis and Exact Solutions of Nonlinear Time Fractional Sharma-Tasso-Olver Equation by Lie Group Analysis,” Nonlinear Dyn.,
76(1), pp. 571–580.

[CrossRef]
Galaktionov,
V. A.
, and
Svirshchevskii,
S. R.
, 2006, Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics,
CRC Press,
Boca Raton, FL.

[CrossRef]
Qin,
C. Y.
,
Tian,
S. F.
,
Wang,
X. B.
, and
Zhang,
T. T.
, 2017, “
Lie Symmetries, Conservation Laws and Explicit Solutions for Time Fractional Rosenau-Haynam Equation,” Commun. Theor. Phys.,
67(2), pp. 157–165.

[CrossRef]
Rudin,
W.
, 2004, Principles of Mathematic Analysis,
China Machine Press,
Beijing, China.

Wang,
G.
,
Kara,
A. H.
, and
Fakhar,
K.
, 2015, “
Symmetry Analysis and Conservation Laws for the Class of Time-Fractional Nonlinear Dispersive Equation,” Nonlinear Dyn.,
82(1–2), pp. 281–287.

[CrossRef]