Baleanu,
D.
,
Golmankhaneh,
A. K.
,
Golmankhaneh,
A. K.
, and
Nigmatullin,
R. R.
, 2010, “
Newtonian Law With Memory,” Nonlinear Dyn.,
60(1–2), pp. 81–86.

[CrossRef]
Engheta,
N.
, 1996, “
On Fractional Calculus and Fractional Multipoles in Electromagnetism,” IEEE Trans. Antennas Propag.,
44(4), pp. 554–566.

[CrossRef]
Golmankhaneh,
A. K.
,
Golmankhaneh,
A. K.
, and
Baleanu,
D.
, 2011, “
On Nonlinear Fractional Klein-Gordon Equation,” Signal Process.,
91(3), pp. 446–451.

[CrossRef]
Magin,
R. L.
, 2010, “
Fractional Calculus Models of Complex Dynamics in Biological Tissues,” Comput. Math. Appl.,
59(5), pp. 1586–1593.

[CrossRef]
Nagy,
A. M.
, and
Sweilam,
N. H.
, 2014, “
An Efficient Method for Solving Fractional Hodgkin-Huxley Model,” Phys. Lett. A,
378(30–31), pp. 1980–1984.

[CrossRef]
Sweilam,
N. H.
,
Nagy,
A. M.
, and
El-Sayed,
A. A.
, 2015, “
Second Kind Shifted Chebyshev Polynomials for Solving Space Fractional Order Diffusion Equation,” Chaos, Solitons Fractals,
73, pp. 141–147.

[CrossRef]
Sweilam,
N. H.
,
Nagy,
A. M.
, and
El-Sayed,
A. A.
, 2016, “
On the Numerical Solution of Space Fractional Order Diffusion Equation Via Shifted Chebyshev Polynomials of the Third Kind,” J. King Saud Univ. Sci.,
28(1), pp. 41–47.

[CrossRef]
Samko,
S. G.
, and
Ross,
B.
, 1993, “
Integration and Differentiation to a Variable Fractional Order,” Integr. Transfer Spec. Funct.,
1(4), pp. 277–300.

[CrossRef]
Bhrawy,
A. H.
, and
Zaky,
M. A.
, 2016, “
Numerical Algorithm for the Variable-Order Caputo Fractional Functional Differential Equation,” Nonlinear Dyn.,
85(3), pp. 1815–1823.

[CrossRef]
Coimbra,
C. F. M.
, 2003, “
Mechanics With Variable-Order Differential Operators,” Ann. Phys.,
12(11), pp. 692–703.

[CrossRef]
Soon,
C. M.
,
Coimbra,
C. F. M.
, and
Kobayashi,
M. H.
, 2005, “
The Variable Viscoelasticity Oscillator,” Ann. Phys.,
14(6), pp. 378–389.

[CrossRef]
Bhrawy,
A. H.
, and
Alshomrani,
M.
, 2012, “
A Shifted Legendre Spectral Method for Fractional-Order Multi-Point Boundary Value Problems,” Adv. Differ. Equations,
8, pp. 1–19.

Sweilam,
N. H.
,
Nagy,
A. M.
, and
El-Sayed,
A. A.
, 2016, “
Solving Time-Fractional Order Telegraph Equation Via Sinc-Legendre Collocation Method,” Mediterr. J. Math.,
13(6), pp. 5119–5133.

[CrossRef]
Babolian,
E.
, and
Hosseini,
M. M.
, 2002, “
A Modified Spectral Method for Numerical Solution of Ordinary Differential Equations With Non-Analytic Solution,” Appl. Math. Comput.,
132(2–3), pp. 341–351.

El-Mesiry,
A.
,
El-Sayed,
A.
, and
El-Saka,
H.
, 2005, “
Numerical Methods for Multi-Term Fractional (Arbitrary) Orders Differential Equations,” Appl. Math. Comput.,
160(3), pp. 683–699.

Esmaeili,
S.
, and
Shamsi,
M.
, 2011, “
A Pseudo-Spectral Scheme for the Approximate Solution of a Family of Fractional Differential Equations,” Commun. Nonlinear Sci. Numer. Simul.,
16(9), pp. 3646–3654.

[CrossRef]
Shiralashetti,
S. C.
, and
Deshi,
A. B.
, 2016, “
An Efficient Haar Wavelet Collocation Method for the Numerical Solution of Multi-Term Fractional Differential Equations,” Nonlinear Dyn.,
83(1–2), pp. 293–303.

[CrossRef]
Ford,
N. J.
, and
Connolly,
J. A.
, 2009, “
Systems-Based Decomposition Schemes for the Approximate Solution of Multi-Term Fractional Differential Equations,” Comput. Appl. Math.,
229(2), pp. 382–391.

[CrossRef]
Chen,
Y. M.
,
Wei,
Y. Q.
,
Liu,
D. Y.
, and
Yu,
H.
, 2015, “
Numerical Solution for a Class of Nonlinear Variable Order Fractional Differential Equations With Legendre Wavelets,” Appl. Math. Lett.,
46, pp. 83–88.

[CrossRef]
Doha,
E. H.
,
Bhrawy,
A. H.
, and
Ezz-Eldien,
S. S.
, 2011, “
Efficient Chebyshev Spectral Methods for Solving Multi-Term Fractional Orders Differential Equations,” Appl. Math. Model.,
35(12), pp. 5662–5672.

[CrossRef]
Doha,
E. H.
,
Bhrawy,
A. H.
, and
Ezz-Eldien,
S. S.
, 2011, “
A Chebyshev Spectral Method Based on Operational Matrix for Initial and Boundary Value Problems of Fractional Order,” Comput. Math. Appl.,
62(5), pp. 2364–2373.

[CrossRef]
Bhrawy,
A. H.
,
Taha,
T. M.
, and
Machado,
J. A. T.
, 2015, “
A Review of Operational Matrices and Spectral Techniques for Fractional Calculus,” Nonlinear Dyn.,
81(3), pp. 1023–1052.

[CrossRef]
Ghoreishi,
F.
, and
Yazdani,
S.
, 2011, “
An Extension of the Spectral TAU Method for Numerical Solution of Multi-Order Fractional Differential Equations With Convergence Analysis,” Comput. Math. Appl.,
61(1), pp. 30–43.

[CrossRef]
Vanani,
S. K.
, and
Aminataei,
A.
, 2011, “
Tau Approximate Solution of Fractional Partial Differential Equations,” Comput. Math. Appl.,
62(3), pp. 1075–1083.

[CrossRef]
Youssri,
Y. H.
, and
Abd-Elhameed,
W. M.
, 2016, “
Spectral Solutions for Multi-Term Fractional Initial Value Problems Using a New Fibonacci Operational Matrix of Fractional Integration,” Prog. Fract. Differ. Appl.,
2(2), pp. 141–151.

[CrossRef]
Zhou,
F. Y.
, and
Xu,
X.
, 2016, “
The Third Kind Chebyshev Wavelets Collocation Method for Solving the Time-Fractional Convection Diffusion Equations With Variable Coefficients,” Appl. Math. Comput.,
280, pp. 11–29.

Keshavarz,
E.
,
Ordokhani,
Y.
, and
Razzaghi,
M.
, 2014, “
Bernoulli Wavelet Operational Matrix of Fractional Order Integration and Its Applications in Solving the Fractional Order Differential Equations,” Appl. Math. Model.,
38(24), pp. 6038–6051.

[CrossRef]
Tavares,
D.
,
Almeida,
R.
, and
Torres,
D. F. M.
, 2016, “
Caputo Derivatives of Fractional Variable Order: Numerical Approximations,” Commun. Nonlinear Sci. Numer. Simul.,
35, pp. 69–87.

[CrossRef]
Atanackovic,
T. M.
,
Janev,
M.
,
Pilipovic,
S.
, and
Zorica,
D.
, 2013, “
An Expansion Formula for Fractional Derivatives of Variable Order,” Cent. Eur. J. Phys.,
11(10), pp. 1350–1360.

Chen,
Y. M.
,
Liu,
L. Q.
,
Li,
B. F.
, and
Sun,
Y.
, 2014, “
Numerical Solution for the Variable Order Linear Cable Equation With Bernstein Polynomials,” Appl. Math. Comput.,
238, pp. 329–341.

Liu,
J.
,
Li,
X.
, and
Wu,
L.
, 2016, “
An Operational Matrix of Fractional Differentiation of the Second Kind of Chebyshev Polynomial for Solving Multiterm Variable Order Fractional Differential Equation,” Math. Probl. Eng.,
2016, pp. 1–10.

Maleknejad,
K.
,
Nouri,
K.
, and
Torkzadeh,
L.
, 2016, “
Operational Matrix of Fractional Integration Based on the Shifted Second Kind Chebyshev Polynomials for Solving Fractional Differential Equations,” Mediterr. J. Math.,
13(3), pp. 1377–1390.

[CrossRef]
Wang,
L. F.
,
Ma,
Y. P.
, and
Yang,
Y. Q.
, 2014, “
Legendre Polynomials Method for Solving a Class of Variable Order Fractional Differential Equation,” Comput. Model. Eng. Sci.,
101(2), pp. 97–111.

Shen,
S.
,
Liu,
F.
,
Chen,
J.
,
Turner,
I.
, and
Anh,
V.
, 2012, “
Numerical Techniques for the Variable Order Time Fractional Diffusion Equation,” Ann. Phys.,
218(22), pp. 10861–10870.

Sweilam,
N. H.
, and
AL-Mrawm,
H. M.
, 2011, “
On the Numerical Solutions of the Variable Order Fractional Heat Equation,” Stud. Nonlinear Sci.,
2(1), pp. 31–36.

Mason,
J. C.
, and
Handscomb,
D. C.
, 2003, Chebyshev Polynomials,
Chapman and Hall,
New York.

[PubMed] [PubMed]
Sweilam,
N. H.
,
Nagy,
A. M.
, and
El-Sayed,
A. A.
, 2016, “
Numerical Approach for Solving Space Fractional Order Diffusion Equations Using Shifted Chebyshev Polynomials of the Fourth Kind,” Turk. J. Math.,
40, pp. 1283–1297.

[CrossRef]
Veselić,
K.
, 2011, Damped Oscillations of Linear Systems—A Mathematical Introduction,
Springer,
Berlin.

[CrossRef]