0
Research Papers

Stability and Stabilization of a Class of Fractional-Order Nonlinear Systems for 1 < α < 2

[+] Author and Article Information
Sunhua Huang

Department of Electrical Engineering,
Northwest A&F University,
Yangling 712100, Shaanxi, China

Bin Wang

Department of Electrical Engineering,
Northwest A&F University,
Yangling 712100, Shaanxi, China
e-mail: binwang@nwsuaf.edu.cn

1Corresponding author.

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received September 19, 2016; final manuscript received November 6, 2017; published online January 10, 2018. Editor: Bala Balachandran.

J. Comput. Nonlinear Dynam 13(3), 031003 (Jan 10, 2018) (8 pages) Paper No: CND-16-1436; doi: 10.1115/1.4038443 History: Received September 19, 2016; Revised November 06, 2017

This study is interested in the stability and stabilization of a class of fractional-order nonlinear systems with Caputo derivatives. Based on the properties of the Laplace transform, Mittag-Leffler function, Jordan decomposition, and Grönwall's inequality, some sufficient conditions that ensure local stability and stabilization of a class of fractional-order nonlinear systems under the Caputo derivative with 1<α<2 are presented. Finally, typical instances, including the fractional-order three-dimensional (3D) nonlinear system and the fractional-order four-dimensional (4D) nonlinear hyperchaos, are implemented to demonstrate the feasibility and validity of the proposed method.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Podlubny, I. , 1999, Fractional Differential Equations, Academic Press, New York. [PubMed] [PubMed]
Bettayeb, M. , and Djennoune, S. , 2016, “Design of Sliding Mode Controllers for Nonlinear Fractional-Order Systems Via Diffusive Representation,” Nonlinear Dyn., 84(2), pp. 593–605. [CrossRef]
Li, C. , Wang, J. C. , Lu, J. G. , and Ge, Y. , 2014, “Observer-Based Stabilisation of a Class of Fractional Order Non-Linear Systems for 0 < α < 2 Case,” IET Control Theory Appl., 8(13), pp. 1238–1246. [CrossRef]
Qian, D. L. , Li, C. P. , Agarwal, R. P. , and Wong, P. J. Y. , 2010, “Stability Analysis of Fractional Differential System With Riemann-Liouville Derivative,” Math. Comput. Model., 52(5–6), pp. 862–874. [CrossRef]
Balasubramaniam, P. , and Tamilalagan, P. , 2015, “Approximate Controllability of a Class of Fractional Neutral Stochastic Integro-Differential Inclusions With Infinite Delay by Using Mainardi's Function,” Appl. Math. Comput., 256, pp. 232–246.
Senol, B. , Ates, A. , Alagoz, B. B. , and Yeroglu, C. , 2014, “A Numerical Investigation for Robust Stability of Fractional-Order Uncertain Systems,” ISA Trans., 53(2), pp. 189–198. [CrossRef] [PubMed]
Baleanu, D. , Magin, R. L. , Bhalekar, S. , and Daftardar-Gejji, V. , 2015, “Chaos in the Fractional Order Nonlinear Bloch Equation With Delay,” Commun. Nonlinear Sci. Numer. Simul., 25(1–3), pp. 41–49. [CrossRef]
Ebrahimkhani, S. , 2016, “Robust Fractional Order Sliding Mode Control of Doubly-Fed Induction Generator (DFIG)-Based Wind Turbines,” ISA Trans., 63, pp. 343–354. [CrossRef] [PubMed]
Gao, Z. , 2014, “A Computing Method on Stability Intervals of Time-Delay for Fractional-Order Retarded Systems With Commensurate Time-Delays,” Automatica, 50(6), pp. 1611–1616. [CrossRef]
Xu, B. B. , Chen, D. Y. , Zhang, H. , and Wang, F. F. , 2015, “Modeling and Stability Analysis of a Fractional-Order Francis Hydro-Turbine Governing System,” Chaos, Solitons Fractals, 75, pp. 50–61. [CrossRef]
Xu, B. B. , Chen, D. Y. , Zhang, H. , and Zhou, R. , 2015, “Dynamic Analysis and Modeling of a Novel Fractional-Order Hydro-Turbine-Generator Unit,” Nonlinear Dyn., 81(3), pp. 1263–1274. [CrossRef]
Xin, B. G. , and Zhang, J. Y. , 2015, “Finite-Time Stabilizing a Fractional-Order Chaotic Financial System With Market Confidence,” Nonlinear Dyn., 79(2), pp. 1399–1409. [CrossRef]
Xu, Y. , Li, Y. G. , and Liu, D. , 2014, “Response of Fractional Oscillators With Viscoelastic Term Under Random Excitation,” ASME J. Comput. Nonlinear Dyn., 9(3), p. 031015. [CrossRef]
Sun, H. H. , Abdelwahad, A. A. , and Onaral, B. , 1984, “Linear Approximation of Transfer Function With a Pole of Fractional Order,” IEEE Trans. Autom. Control, 29(5), pp. 441–444. [CrossRef]
Flores-Tlacuahuac, A. , and Biegler, L. T. , 2014, “Optimization of Fractional Order Dynamic Chemical Processing Systems,” Ind. Eng. Chem. Res., 53(13), pp. 5110–5127. [CrossRef]
Baleanu, D. , Golmankhaneh, A. K. , Golmankhaneh, A. K. , and Baleanu, M. C. , 2009, “Fractional Electromagnetic Equations Using Fractional Forms,” Int. J. Theor. Phys., 48(11), pp. 3114–3123. [CrossRef]
Ghasemi, S. , Tabesh, A. , and Askari-Marnani, J. , 2014, “Application of Fractional Calculus Theory to Robust Controller Design for Wind Turbine Generators,” IEEE Trans. Energy Convers., 29(3), pp. 780–787. [CrossRef]
Kusnezov, D. , Bulgac, A. , and Dang, G. D. , 1999, “Quantum Levy Processes and Fractional Kinetics,” Phys. Rev. Lett., 82(6), pp. 1136–1139. [CrossRef]
Sabatier, J. , Moze, M. , and Farges, C. , 2212, “LMI Stability Conditions for Fractional Order Systems,” Comput. Math. Appl., 59(5), pp. 1594–1609. [CrossRef]
Ahn, H. S. , Chen, Y. Q. , and Podlubny, I. , 2007, “Robust Stability Test of a Class of Linear Time-Invariant Interval Fractional-Order System Using Lyapunov Inequality,” Appl. Math. Comput., 187(1), pp. 27–34.
Gao, Z. , 2015, “Robust Stabilization Criterion of Fractional-Order Controllers for Interval Fractional-Order Plants,” Automatica, 61, pp. 9–17. [CrossRef]
Lu, J. G. , and Chen, G. R. , 2009, “Robust Stability and Stabilization of Fractional-Order Interval Systems: An LMI Approach,” IEEE Trans. Autom. Control, 54(6), pp. 1294–1299. [CrossRef]
Li, C. , and Wang, J. C. , 2012, “Robust Stability and Stabilization of Fractional Order Interval Systems With Coupling Relationships: The 0 < α < 1 Case,” J. Franklin Inst., 349(7), pp. 2406–2419. [CrossRef]
Chen, G. R. , and Yang, Y. , 2015, “Robust Finite-Time Stability of Fractional Order Linear Time-Varying Impulsive Systems,” Circuits Syst. Signal Process., 34(4), pp. 1325–1341. [CrossRef]
Chen, D. Y. , Zhang, R. F. , Liu, X. Z. , and Ma, X. Y. , 2014, “Fractional Order Lyapunov Stability Theorem and Its Applications in Synchronization of Complex Dynamical Networks,” Commun. Nonlinear Sci. Numer. Simul., 19(12), pp. 4105–4121. [CrossRef]
Xu, B. , Chen, D. , Zhang, H. , and Wang, F. , 2015, “The Modeling of the Fractional-Order Shafting System for a Water Jet Mixed-Flow Pump During the Startup Process,” Commun. Nonlinear Sci. Numer. Simul., 29(1–3), pp. 12–24. [CrossRef]
Aguila-Camacho, N. , Duarte-Mermoud, M. A. , and Gallegos, J. A. , 2014, “Lyapunov Functions for Fractional Order Systems,” Commun. Nonlinear Sci. Numer. Simul., 19(9), pp. 2951–2957. [CrossRef]
Li, Y. , Chen, Y. Q. , and Podlubny, I. , 2009, “Mittag-Leffler Stability of Fractional Order Nonlinear Dynamic Systems,” Automatica, 45(8), pp. 1965–1969. [CrossRef]
Ding, D. S. , Qi, D. L. , and Wang, Q. , 2015, “Non-Linear Mittag-Leffler Stabilisation of Commensurate Fractional-Order Non-Linear Systems,” IET Control Theory Appl., 9(5), pp. 681–690. [CrossRef]
Yu, J. M. , Hu, H. , Zhou, S. B. , and Lin, X. R. , 2013, “Generalized Mittag-Leffler Stability of Multi-Variables Fractional Order Nonlinear Systems,” Automatica, 49(6), pp. 1798–1803. [CrossRef]
Aghababa, M. P. , 2012, “Robust Stabilization and Synchronization of a Class of Fractional-Order Chaotic Systems Via a Novel Fractional Sliding Mode Controller,” Commun. Nonlinear Sci. Numer. Simul., 17(6), pp. 2670–2681. [CrossRef]
Aghababa, M. P. , 2016, “Control of Non-Integer-Order Dynamical Systems Using Sliding Mode Scheme,” Complexity, 21(6), pp. 224–233. [CrossRef]
Aghababa, M. P. , 2013, “A Novel Terminal Sliding Mode Controller for a Class of Non-Autonomous Fractional-Order Systems,” Nonlinear Dyn., 73(1–2), pp. 679–688. [CrossRef]
Wang, B. , Xue, J. Y. , Wu, F. J. , and Zhu, D. L. , 2016, “Stabilization Conditions for Fuzzy Control of Uncertain Fractional Order Non-Linear Systems With Random Disturbances,” IET Control Theory Appl., 10(6), pp. 637–647. [CrossRef]
Chen, D. Y. , Zhao, W. L. , Sprott, J. C. , and Ma, X. Y. , 2013, “Application of Takagi-Sugeno Fuzzy Model to a Class of Chaotic Synchronization and Anti-Synchronization,” Nonlinear Dyn., 73(3), pp. 1495–1505. [CrossRef]
Rakkiyappan, R. , Velmurugan, G. , and Cao, J. D. , 2014, “Finite-Time Stability Analysis of Fractional-Order Complex-Valued Memristor-Based Neural Networks With Time Delays,” Nonlinear Dyn., 78(4), pp. 2823–2836. [CrossRef]
Xu, B. B. , Chen, D. , Zhang, H. , Wang, F. , Zhang, X. , and Wu, Y. , 2017, “Hamiltonian Model and Dynamic Analyses for a Hydro-Turbine Governing System With Fractional Item and Time-Lag,” Commun. Nonlinear Sci. Numer. Simul., 47, pp. 35–47. [CrossRef]
Wang, B. , Ding, J. L. , Wu, F. J. , and Zhu, D. L. , 2016, “Robust Finite-Time Control of Fractional-Order Nonlinear Systems Via Frequency Distributed Model,” Nonlinear Dyn., 85(4), pp. 2133–2142. [CrossRef]
Lan, Y. H. , Huang, H. X. , and Zhou, Y. , 2012, “Observer-Based Robust Control of a (1 ≤ α < 2) Fractional-Order Uncertain Systems: A Linear Matrix Inequality Approach,” IET Control Theory Appl., 6(2), pp. 229–234. [CrossRef]
Zhang, R. X. , Tian, G. , Yang, S. P. , and Cao, H. F. , 2015, “Stability Analysis of a Class of Fractional Order Nonlinear Systems With Order Lying in (0, 2),” ISA Trans., 56, pp. 102–110. [CrossRef] [PubMed]
Yang, N. N. , and Liu, C. X. , 2013, “A Novel Fractional-Order Hyperchaotic System Stabilization Via Fractional Sliding-Mode Control,” Nonlinear Dyn., 74(3), pp. 721–732. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

State trajectories of uncontrolled fractional-order nonlinear system (34) with α=1.4

Grahic Jump Location
Fig. 2

State trajectories of controlled fractional-order nonlinear system (37) with α=1.4

Grahic Jump Location
Fig. 3

State trajectories of controlled fractional-order nonlinear system (37) with α=1.9

Grahic Jump Location
Fig. 4

State trajectories of uncontrolled fractional-order nonlinear system (40) with α=1.1

Grahic Jump Location
Fig. 5

State trajectories of controlled fractional-order nonlinear system (43) with α=1.1

Grahic Jump Location
Fig. 6

State trajectories of controlled fractional-order nonlinear system (43) with α=1.9

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In