Podlubny,
I.
, 1999, Fractional Differential Equations,
Academic Press,
San Diego, CA, p. E2.

[PubMed] [PubMed]
Heaviside,
O.
, 1971, Electromagnetic Theory,
Ams Chelsea Publishing,
New York.

Ichise,
M.
,
Nagayanagi,
Y.
, and
Kojima,
T.
, 1971, “
An Analog Simulation of Non-Integer Order Transfer Functions for Analysis of Electrode Processes,” J. Electroanal. Chem. Interfacial Electrochem.,
33(2), pp. 253–265.

[CrossRef]
Pinto,
C.
, 2017, “
A Note on Fractional Feed-Forward Networks,” Math. Methods Appl. Sci.,
40(17), pp. 6133–6137.

[CrossRef]
Pinto,
C. M. A.
, and
Carvalho,
A. R. M.
, 2017, “
The Impact of Pre-Exposure Prophylaxis (PrEP) and Screening on the Dynamics of HIV,” J. Comput. Appl. Math., in press.

Pinto,
C. M. A.
, and
Carvalho,
A. R. M.
, 2017, “
The HIV/TB Coinfection Severity in the Presence of TB Multi-Drug Resistant Strains,” Ecol. Complexity,
32(Pt. A), pp. 1–20.

[CrossRef]
Pinto,
C. M. A.
, and
Carvalho,
A. R. M.
, 2017, “
The Role of Synaptic Transmission in a HIV Model With Memory,” Appl. Math. Comput.,
292(▪), pp. 76–95.

Singh,
J.
,
Kumar,
D.
, and
Baleanu,
D.
, 2017, “
On the Analysis of Chemical Kinetics System Pertaining to a Fractional Derivative With Mittag-Leffler Type Kernel,” Chaos Interdiscip. J. Nonlinear Sci.,
27(10), p. 103113.

[CrossRef]
Wang,
Z.
,
Huang,
X.
, and
Shi,
G.
, 2011, “
Analysis of Nonlinear Dynamics and Chaos in a Fractional Order Financial System With Time Delay,” Comput. Math. Appl.,
62(3), pp. 1531–1539.

[CrossRef]
Li,
C.
, and
Chen,
G.
, 2004, “
Chaos and Hyperchaos in the Fractional-Order Rössler Equations,” Physica A,
341, pp. 55–61.

[CrossRef]
Grigorenko,
I.
, and
Grigorenko,
E.
, 2003, “
Chaotic Dynamics of the Fractional Lorenz System,” Phys. Rev. Lett.,
91(3), p. 034101.

[CrossRef] [PubMed]
Hegazi,
A. S.
, and
Matouk,
A. E.
, 2011, “
Dynamical Behaviors and Synchronization in the Fractional Order Hyperchaotic Chen System,” Appl. Math. Lett.,
24(11), pp. 1938–1944.

[CrossRef]
Wang,
L.
, and
Xu,
Y.
, 2011, “
An Effective Hybrid Biogeography-Based Optimization Algorithm for Parameter Estimation of Chaotic Systems,” Expert Syst. Appl.,
38(12), pp. 15103–15109.

[CrossRef]
Cheng,
C. H.
,
Cheng,
T. Y.
,
Du,
C. H.
,
Lu,
Y. C.
,
Chiou,
Y. P.
,
Liu,
S.
, and
Wu,
T. L.
, 2014, “
Parameter Estimation of Chaotic Systems by an Oppositional Seeker Optimization Algorithm,” Nonlinear Dyn.,
76(1), pp. 509–517.

[CrossRef]
Li,
X.
, and
Yin,
M.
, 2014, “
Parameter Estimation for Chaotic Systems by Hybrid Differential Evolution Algorithm and Artificial Bee Colony Algorithm,” Nonlinear Dyn.,
77(1–2), pp. 61–71.

[CrossRef]
Wang,
J.
, and
Zhou,
B.
, 2016, “
A Hybrid Adaptive Cuckoo Search Optimization Algorithm for the Problem of Chaotic Systems Parameter Estimation,” Neural Comput. Appl.,
27(6), pp. 1511–1517.

[CrossRef]
Diethelm,
K.
,
Ford,
N. J.
, and
Freed,
A. D.
, 2002, “
A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations,” Nonlinear Dyn.,
29(1), pp. 3–22.

[CrossRef]
Baleanu,
D.
,
Mousalou,
A.
, and
Rezapour,
S.
, 2017, “
On the Existence of Solutions for Some Infinite Coefficient-Symmetric Caputo-Fabrizio Fractional Integro-Differential Equations,” Boundary Value Probl.,
2017(1), p. 145.

[CrossRef]
Kumar,
D.
,
Singh,
J.
, and
Baleanu,
D.
, 2018, “
A New Numerical Algorithm for Fractional Fitzhugh–Nagumo Equation Arising in Transmission of Nerve Impulses,” Nonlinear Dyn.,
91(1), pp. 307–317.

[CrossRef]
Parlitz,
U.
,
Junge,
L.
, and
Kocarev,
L.
, 1996, “
Synchronization-Based Parameter Estimation From Time Series,” Phys. Rev. E,
54(6), p. 6253.

[CrossRef]
Parlitz,
U.
, 1996, “
Estimating Model Parameters From Time Series by Autosynchronization,” Phys. Rev. Lett.,
76(8), p. 1232.

[CrossRef] [PubMed]
Gao,
F.
,
Fei,
F.-X.
,
Lee,
X.-J.
,
Tong,
H.-Q.
,
Deng,
Y.-F.
, and
Zhao,
H.-L.
, 2014, “
Inversion Mechanism With Functional Extrema Model for Identification Incommensurate and Hyper Fractional Chaos Via Differential Evolution,” Expert Syst. Appl.,
41(4), pp. 1915–1927.

[CrossRef]
Storn,
R.
, and
Price,
K.
, 1997, “
Differential Evolution—A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces,” J. Global Optim.,
11(4), pp. 341–359.

[CrossRef]
Kennedy,
J.
, and
Eberhart,
R.
, 1995, “
Particle Swarm Optimization (PSO),” IEEE International Conference on Neural Networks, Perth, Australia, Nov. 27–Dec. 1, pp. 1942–1948.

Yang,
X. S.
, and
Deb,
S.
, 2009, “
Cuckoo Search Via Lévy Flights,” World Congress on Nature and Biologically Inspired Computing (NaBIC 2009), Coimbatore, India, Dec. 9–11, pp. 210–214.

Tang,
Y.
,
Zhang,
X.
,
Hua,
C.
,
Li,
L.
, and
Yang,
Y.
, 2012, “
Parameter Identification of Commensurate Fractional-Order Chaotic System Via Differential Evolution,” Phys. Lett. A,
376(4), pp. 457–464.

[CrossRef]
Sun,
J.
,
Xu,
W.
, and
Feng,
B.
, 2005, “
A Global Search Strategy of Quantum-Behaved Particle Swarm Optimization,” IEEE Conference on Cybernetics and Intelligent Systems, Singapore, Dec. 1–3, pp. 111–116.

Zhang,
X. F.
, and
Sui,
G. F.
, 2013, “
Quantum-Behaved Particle Swarm Optimization Algorithm for Solving Nonlinear Equations,” Adv. Mater. Res.,
756–759, pp. 2926–2931.

Turgut,
O. E.
,
Turgut,
M. S.
, and
Coban,
M. T.
, 2014, “
Chaotic Quantum Behaved Particle Swarm Optimization Algorithm for Solving Nonlinear System of Equations,” Comput. Math. Appl.,
68(4), pp. 508–530.

[CrossRef]
Tang,
D.
,
Cai,
Y.
,
Zhao,
J.
, and
Xue,
Y.
, 2014, “
A Quantum-Behaved Particle Swarm Optimization With Memetic Algorithm and Memory for Continuous Non-Linear Large Scale Problems,” Inf. Sci.,
289(24), pp. 162–189.

[CrossRef]
Samko,
S. G.
,
Kilbas,
A. A.
,
Marichev,
O. I.
, et al. ., 1993, “
Fractional Integrals and Derivatives,” Theory and Applications,
Gordon and Breach,
Yverdon, Switzerland.

Hairer,
E.
,
Rsett,
S. P.
, and
Wanner,
G.
, 1993, Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd ed.,
Springer-Verlag,
New York.

Hairer,
E.
, and
Wanner,
G.
, 1991, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems,
Springer-Verlag, Berlin.

Tizhoosh,
H. R.
, 2005, “
Opposition-Based Learning: A New Scheme for Machine Intelligence,” International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, Vienna, Austria, Nov. 28–30, pp. 695–701.

Wang,
H.
,
Wu,
Z.
,
Rahnamayan,
S.
,
Liu,
Y.
, and
Ventresca,
M.
, 2011, “
Enhancing Particle Swarm Optimization Using Generalized Opposition-Based Learning,” Inf. Sci.,
181(20), pp. 4699–4714.

[CrossRef]
Rao,
R. V.
,
Savsani,
V. J.
, and
Vakharia,
D. P.
, 2011, “
Teaching-Learning-Based Optimization: A Novel Method for Constrained Mechanical Design Optimization Problems,” Comput.-Aided Des.,
43(3), pp. 303–315.

[CrossRef]
Hu,
W.
,
Yu,
Y.
, and
Zhang,
S.
, 2015, “
A Hybrid Artificial Bee Colony Algorithm for Parameter Identification of Uncertain Fractional-Order Chaotic Systems,” Nonlinear Dyn.,
82(3), pp. 1441–1456.

[CrossRef]
Zhu,
W.
,
Fang,
J.
,
Tang,
Y.
,
Zhang,
W.
, and
Xu,
Y.
, 2012, “
Identification of Fractional-Order Systems Via a Switching Differential Evolution Subject to Noise Perturbations,” Phys. Lett. A,
376(45), pp. 3113–3120.

[CrossRef]
Huang,
Y.
,
Guo,
F.
,
Li,
Y.
, and
Liu,
Y.
, 2015, “
Parameter Estimation of Fractional-Order Chaotic Systems by Using Quantum Parallel Particle Swarm Optimization Algorithm,” PloS One,
10(1), p. e0114910.

[CrossRef] [PubMed]
Wei,
J.
,
Yu,
Y.
, and
Wang,
S.
, 2015, “
Parameter Estimation for Noisy Chaotic Systems Based on an Improved Particle Swarm Optimization Algorithm,” J. Appl. Anal. Comput.,
5(2), pp. 232–242.

http://jaac.ijournal.cn/ch/reader/create_pdf.aspx?file_no=20150207&journal_id=jaac
Hu,
W.
,
Yu,
Y.
, and
Wang,
S.
, 2015, “
Parameters Estimation of Uncertain Fractional-Order Chaotic Systems Via a Modified Artificial Bee Colony Algorithm,” Entropy,
17(12), pp. 692–709.

[CrossRef]
Gu,
W.
,
Yu,
Y.
, and
Hu,
W.
, 2015, “
Parameter Estimation of Unknown Fractional-Order Memristor-Based Chaotic Systems by a Hybrid Artificial Bee Colony Algorithm Combined With Differential Evolution,” Nonlinear Dyn.,
84(2), pp. 779–795.

[CrossRef]
Chen,
W. C.
, 2008, “
Nonlinear Dynamics and Chaos in a Fractional-Order Financial System,” Chaos Solitons Fractals,
36(5), pp. 1305–1314.

[CrossRef]Petráš, I., and Bednárová, D., 2009, “
Fractional-Order Chaotic Systems,” IEEE International Conference on Emerging Technologies and Factory Automation, pp. 1031–1038.