0
Research Papers

Tracking of a Bouncing Ball in a Planar Billiard Through Continuous-Time Approximations

[+] Author and Article Information
Laura Menini

Dipartimento di Ingegneria Civile e Ingegneria
Informatica,
Università di Roma Tor Vergata,
Roma 00133, Italy
e-mail: menini@disp.uniroma2.it

Corrado Possieri

Dipartimento di Elettronica e Telecomunicazioni,
Politecnico di Torino,
Torino 10129, Italy
e-mail: possieri@ing.uniroma2.it

Antonio Tornambè

Professor
Dipartimento di Ingegneria Civile e Ingegneria
Informatica,
Università di Roma Tor Vergata,
Roma 00133, Italy
e-mail: tornambe@disp.uniroma2.it

1Corresponding author.

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received July 14, 2017; final manuscript received March 26, 2018; published online April 27, 2018. Assoc. Editor: Bernard Brogliato.

J. Comput. Nonlinear Dynam 13(6), 061006 (Apr 27, 2018) (7 pages) Paper No: CND-17-1312; doi: 10.1115/1.4039876 History: Received July 14, 2017; Revised March 26, 2018

The main goal of this paper is to design a state feedback control that makes a point mass track a non-Zeno reference trajectory in a planar billiard. This objective is achieved by first determining a continuous-time dynamical model, whose trajectories approximate the solutions of the hybrid system. Hence, a state feedback that makes the hybrid system track a reference trajectory of the continuous-time one is proposed. Finally, these two techniques are combined in order to find a state feedback that achieves tracking of the trajectories of the unforced system. Examples are reported all throughout the paper to illustrate the theoretical results.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Galeani, S. , Menini, L. , Potini, A. , and Tornambe, A. , 2008, “Trajectory Tracking for a Particle in Elliptical Billiards,” Int. J. Control, 81(2), pp. 189–213. [CrossRef]
Sinai, Y. G. , 1970, “Dynamical Systems With Elastic Reflections,” Russ. Math. Surv., 25(2), pp. 137–189. [CrossRef]
Bunimovich, L. A. , Sinai, Y. G. , and Chernov, N. I. , 1991, “Statistical Properties of Two-Dimensional Hyperbolic Billiards,” Russ. Math. Surv., 46(4), pp. 47–106. [CrossRef]
Burago, D. , Ferleger, S. , and Kononenko, A. , 1998, “Uniform Estimates on the Number of Collisions in Semi-Dispersing Billiards,” Ann. Math, 147(3), pp. 695–708. [CrossRef]
Lehman, R. , and White, C. , 2002, “Hyperbolic Billiard Paths,” Math. Sci. Tech. Rep., 61, pp. 1–32. https://scholar.rose-hulman.edu/math_mstr/61/
Chernov, N. , and Markarian, R. , 2006, “Chaotic Billiards,” Math. Surv. Monographs, 127, pp. 1–278.
Gibbs, J. W. , 2014, Elementary Principles in Statistical Mechanics, Courier Corp, Mineola, NY.
Steiner, F. , 1994, “Quantum Chaos,” preprint arXiv:chao-dyn/9402001. https://arxiv.org/abs/chao-dyn/9402001
Chernov, N. I. , 1991, “New Proof of Sinai's Formula for the Entropy of Hyperbolic Billiard Systems. Application to Lorentz Gases and Bunimovich Stadiums,” Funct. Anal. Applic, 25(3), pp. 204–219. [CrossRef]
Bardos, C. , Caflisch, R. E. , and Nicolaenko, B. , 1986, “The Milne and Kramers Problems for the Boltzmann Equation of a Hard Sphere Gas,” Commun. Pure Appl. Math., 39(3), pp. 323–352. [CrossRef]
Brogliato, B. , Niculescu, S.-I. , and Orhant, P. , 1997, “On the Control of Finite-Dimensional Mechanical Systems With Unilateral Constraints,” IEEE Trans. Autom. Control, 42(2), pp. 200–215. [CrossRef]
Brogliato, B. , and Zavala Rio, A. , 2000, “On the Control of Complementary-Slackness Juggling Mechanical Systems,” IEEE Trans. Autom. Control, 45(2), pp. 235–246. [CrossRef]
Brogliato, B. , 2000, Impacts in Mechanical Systems: Analysis and Modelling, Springer-Verlag, Berlin. [CrossRef]
Heemels, W. P. M. H. , and Brogliato, B. , 2003, “The Complementarity Class of Hybrid Dynamical Systems,” Eur. J. Control, 9(2–3), pp. 322–360. [CrossRef]
Brogliato, B. , 2003, “Some Perspectives on the Analysis and Control of Complementarity Systems,” IEEE Trans. Autom. Control, 48(6), pp. 918–935. [CrossRef]
Brogliato, B. , 2016, Nonsmooth Mechanics, Springer-Verlag, London. [CrossRef]
Brogliato, B. , 2017, “Feedback Control of Multibody Systems With Joint Clearance and Dynamic Backlash: A Tutorial,” Multibody Syst. Dyn., 42(3), pp. 283–315. [CrossRef]
Sanfelice, R. G. , Teel, A. R. , and Sepulchre, R. , 2007, “A Hybrid Systems Approach to Trajectory Tracking Control for Juggling Systems,” 46th IEEE on Decision and Control (CDC), New Orleans, LA, Dec. 12–14, pp. 5282–5287.
Goebel, R. , Sanfelice, R. G. , and Teel, A. R. , 2009, “Hybrid Dynamical Systems,” IEEE Control Syst. Mag., 29(2), pp. 28–93. [CrossRef]
Rizzi, A. A. , Whitcomb, L. L. , and Koditschek, D. E. , 1992, “Distributed Real-Time Control of a Spatial Robot Juggler,” Computer, 25(5), pp. 12–24. [CrossRef]
Forni, F. , Teel, A. R. , and Zaccarian, L. , 2013, “Follow the Bouncing Ball: Global Results on Tracking and State Estimation With Impacts,” IEEE Trans. Autom. Control, 58(6), pp. 1470–1485. [CrossRef]
Rijnen, M. , Saccon, A. , and Nijmeijer, H. , 2015, “On Optimal Trajectory Tracking for Mechanical Systems With Unilateral Constraints,” 54th IEEE Conference on Decision Control (CDC), Osaka, Japan, Dec. 15–18, pp. 2561–2566.
Tanwani, A. , Brogliato, B. , and Prieur, C. , 2014, “On Output Regulation in State-Constrained Systems: An Application to Polyhedral Case,” IFAC Proc., 47(3), pp. 1513–1518. [CrossRef]
Tanwani, A. , Brogliato, B. , and Prieur, C. , 2016, “Observer Design for Unilaterally Constrained Lagrangian Systems: A Passivity-Based Approach,” IEEE Trans. Autom. Control, 61(9), pp. 2386–2401. [CrossRef]
Menini, L. , and Tornambe, A. , 2003, “Control of (Otherwise) Uncontrollable Linear Mechanical Systems Through Non-Smooth Impacts,” Syst. Control Lett., 49(4), pp. 311–322. [CrossRef]
Menini, L. , Possieri, C. , and Tornambe, A. , 2015, “On the Computation of the Continuous-Time Reference Trajectory for Mechanical Juggling Systems,” IEEE 54th Annual Conference on Decision and Control (CDC), Osaka, Japan, Dec. 15–18, pp. 145–150.
Tornambe, A. , 1993, “Global Output Tracking of Polynomial Reference Signals for a Class of Single-Input Single-Output Nonlinear Systems,” IEE Proc. Control Theory Appl., 140(2), pp. 93–98. [CrossRef]
Menini, L. , Possieri, C. , and Tornambè, A. , 2018, “Dead–Beat Regulation of Mechanical Juggling Systems,” Asian J. Control, 20(1), pp. 1–11. [CrossRef]
Brogliato, B. , Niculescu, S. , and Monteiro-Marques, M. , 2000, “On Tracking Control of a Class of Complementary-Slackness Hybrid Mechanical Systems,” Syst. Control Lett., 39(4), pp. 255–266. [CrossRef]
Miranda-Villatoro, F. , Brogliato, B. , and Castaños, F. , 2016, “Multivalued Robust Tracking Control of Lagrange Systems: Continuous and Discrete–Time Algorithms,” IEEE Trans. Autom. Control, 62(9), pp. 4436–4450. [CrossRef]
Halpern, B. , 1977, “Strange Billiard Tables,” Trans. Am. Math. Soc, 232, pp. 297–305. [CrossRef]
Vanderbei, R. , 1996, Linear Programming: Foundations and Extensions, Springer, New York.
Wright, S. , and Nocedal, J. , 1999, Numerical Optimization, Vol. 35, Springer-Verlag, New York, pp. 67–68. [CrossRef]
Menini, L. , and Tornambe, A. , 2000, “The Use of the Barrier Method for the Impact Analysis in Mechanical Systems,” IFAC Proc. Vol., 33(13), pp. 77–82.
Goebel, R. , Sanfelice, R. G. , and Teel, A. R. , 2012, Hybrid Dynamical Systems, Princeton University Press, Princeton, NJ.
Goebel, R. , and Sanfelice, R. , 2016, “How Well-Posedness of Hybrid Systems Can Extend Beyond Zeno Times,” 55th IEEE Conference on Decision and Control (CDC), Las Vegas, NV, Dec. 12–14, pp. 598–603.
Curtiss, D. R. , 1918, “Recent Extensions of Descartes' Rule of Signs,” Ann. Math., 19(4), pp. 251–278. [CrossRef]
Montano, O. E. , Orlov, Y. , and Aoustin, Y. , 2016, “Nonlinear H -Control Under Unilateral Constraints,” Int. J. Control, 89(12), pp. 2549–2571. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Chaotic behavior of the solutions to system (2)

Grahic Jump Location
Fig. 2

Comparison of the trajectories of systems (2) and (4): (a) trajectories of systems (2) and (4) and (b) approximation error

Grahic Jump Location
Fig. 3

Tracking of the continuous-time approximation: (a) trajectories of systems (2), (4), and (6) and (b) tracking error

Grahic Jump Location
Fig. 4

Chaotic behavior of the solutions to system (2). The figures have been cropped for presentation purposes (in the first simulation, x1(t)∈[−3.14,2.72], x2(t)∈[−4.75,7.64], whereas, in the second simulation, x1(t)∈[−3.21,9.52], x2(t)∈[−3.98,1.49]).

Grahic Jump Location
Fig. 5

Reference trajectory ξ¯, solution ξ̂ of system (4), and solution ξ of the closed-loop system

Grahic Jump Location
Fig. 6

Control inputs resulting from the feedback law given in Eq. (9): (a) control inputs and (b) transient behavior

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In