Ohishi,
K.
,
Nakao,
M.
,
Ohnishi,
K.
, and
Miyachi,
K.
, 1987, “
Microprocessor-Controlled DC Motor for Load-Insensitive Position Servo System,” IEEE Trans. Ind. Electron.,
34(1), pp. 44–49.

[CrossRef]
Li,
S.
,
Yang,
J.
,
Chen,
W. H.
, and
Chen,
X.
, 2014, Disturbance Observer-Based Control: Methods and Applications,
CRC Press,
Boca Raton, FL.

Chen,
W. H.
,
Yang,
J.
,
Guo,
L.
, and
Li,
S.
, 2016, “
Disturbance-Observer-Based Control and Related Methods—An Overview,” IEEE Trans. Ind. Electron.,
63(2), pp. 1083–1095.

[CrossRef]
Chen,
W. H.
, 2004, “
Disturbance Observer Based Control for Nonlinear Systems,” IEEE/ASME Trans. Mechatronics,
9(4), pp. 706–710.

[CrossRef]
Iwasaki,
M.
,
Shibata,
T.
, and
Matsui,
N.
, 1999, “
Disturbance-Observer-Based Nonlinear Friction Compensation in Table Drive System,” IEEE/ASME Trans. Mechatronics,
4(1), pp. 3–8.

[CrossRef]
Eom,
K. S.
,
Suh,
I. H.
,
Chung,
W. K.
, and
Oh,
S. R.
, 1998, “
Disturbance Observer Based Force Control of Robot Manipulator Without Force Sensor,” IEEE International Conference on Robotics and Automation (ICRA), Leuven, Belgium, May 20, pp. 3012–3017.

Murakami,
T.
,
Nakamura,
R.
,
Yu,
F.
, and
Ohnishi,
K.
, 1993, “
Force Sensorless Impedance Control by Disturbance Observer,” IEEE Power Conversion Conference, Yokohama, Japan, Apr. 19–21, pp. 352–357.

Katsura,
S.
, and
Matsumto,
Y.
, 2007, “
Modeling of Force Sensing and Validation of Disturbance Observer for Force Control,” IEEE Trans. Ind. Electron.,
54(1), pp. 530–538.

[CrossRef]
Gupta,
A.
, and
O'Malley,
M. K.
, 2011, “
Disturbance-Observer-Based Force Estimation for Haptic Feedback,” ASME J. Dyn. Syst. Meas. Control,
133(1), p. 014505.

[CrossRef]
Wang,
H.
, and
Chen,
M.
, 2016, “
Trajectory Tracking Control for an Indoor Quadrotor UAV Based on the Disturbance Observer,” Trans. Inst. Meas. Control,
38(6), pp. 675–692.

[CrossRef]
Yang,
J.
,
Li,
S.
, and
Yu,
X.
, 2013, “
Sliding Mode Control for Systems With Mismatched Uncertainties Via Disturbance Observer,” IEEE Trans. Ind. Electron.,
60(1), pp. 160–169.

[CrossRef]
Mohammadi,
A.
,
Tavakoli,
M.
,
Marquez,
H. J.
, and
Hashemzadeh,
F.
, 2013, “
Nonlinear Disturbance Observer Design for Robotic Manipulators,” Control Eng. Pract.,
21(3), pp. 253–267.

[CrossRef]
Liu,
L. P.
,
Fu,
Z. M.
, and
Song,
X. N.
, 2012, “
Sliding Mode Control With Disturbance Observer for a Class of Nonlinear Systems,” Int. J. Autom. Comput.,
9(5), pp. 487–491.

[CrossRef]
Chen,
X.
,
Komada,
S.
, and
Fukuda,
T.
, 2000, “
Design of a Nonlinear Disturbance Observer,” IEEE Trans. Ind. Electron.,
47(2), pp. 429–437.

[CrossRef]
Chen,
W. H.
,
Ballance,
D. J.
,
Gawthrop,
P. J.
, and
O'Reilly,
J.
, 2000, “
A Nonlinear Disturbance Observer for Robotic Manipulators,” IEEE Trans. Ind. Electron.,
47(4), pp. 932–938.

[CrossRef]
Pashaei,
S.
, and
Badamchizadeh,
M.
, 2016, “
A New Fractional-Order Sliding Mode Controller Via a Nonlinear Disturbance Observer for a Class of Dynamical Systems With Mismatched Disturbances,” ISA Trans.,
63, pp. 39–48.

[CrossRef] [PubMed]
Chen,
M.
,
Shu-Yi,
S.
,
Shi,
P.
, and
Shi,
Y.
, 2017, “
Disturbance-Observer-Based Robust Synchronization Control for a Class of Fractional-Order Chaotic Systems,” IEEE Trans. Circuits Syst. II: Express Briefs,
64(4), pp. 417–421.

[CrossRef]
Lin,
C.
,
Chen,
B.
,
Shi,
P.
, and
Yu,
J. P.
, 2018, “
Necessary and Sufficient Conditions of Observer-Based Stabilization for a Class of Fractional-Order Descriptor Systems,” Syst. Control Lett.,
112, pp. 31–35.

[CrossRef]
Podlubny,
I.
, 1999, Fractional Differential Equations,
Academic Press,
San Diego, CA.

[PubMed] [PubMed]
Samko,
S.
,
Kilbas,
A.
, and
Marichev,
O.
, 1993, Fractional Integrals and Derivatives. Theory and Applications,
Gordon and Breach,
Yverdon, Switzerland.

Song,
X.
,
Song,
S.
, and
Tejado,
I.
, 2016, “
Fuzzy Adaptive Function Projective Combination Synchronization of a Class of Fractional-Order Chaotic and Hyperchaotic Systems,” Int. J. Innovative Comput., Inf. Control,
12(4), pp. 1317–1332.

http://www.ijicic.org/ijicic-120420.pdf
Efe,
M. Ö.
, 2010, “
Fractional Order Sliding Mode Control With Reaching Law Approach,” Turk. J. Electr. Eng. Comput. Sci.,
18(5), pp. 731–748.

Efe,
M. Ö.
, 2011, “
Integral Sliding Mode Control of a Quadrotor With Fractional Order Reaching Dynamics,” Trans. Inst. Meas. Control,
33(8), pp. 985–1003.

[CrossRef]
Hu,
W.
,
Ding,
D.
, and
Wang,
N.
, 2016, “
Nonlinear Dynamic Analysis of a Simplest Fractional-Order Delayed Memristive Chaotic System,” ASME J. Comput. Nonlinear Dyn.,
12(4), p. 041003.

[CrossRef]
Alaviyan-Shahri,
E. S.
,
Alfi,
A.
, and
Tenreiro-Machado,
J. A.
, 2016, “
Stabilization of Fractional-Order Systems Subject to Saturation Element Using Fractional Dynamic Output Feedback Sliding Mode Control,” ASME J. Comput. Nonlinear Dyn.,
12(3), p. 031014.

[CrossRef]
Duc,
T. M.
,
Hoa,
N. V.
, and
Dao,
T. P.
, 2018, “
Adaptive Fuzzy Fractional-Order Nonsingular Terminal Sliding Mode Control for a Class of Second-Order Nonlinear Systems,” ASME J. Comput. Nonlinear Dyn.,
13(3), p. 031004.

[CrossRef]
Muñoz-Vázquez,
A. J.
,
Parra-Veg,
V.
,
Sánchez-Orta,
A.
, and
Romero-Galván,
G.
, 2017, “
Output Feedback Finite-Time Stabilization of Systems Subject to Hölder Disturbances Via Continuous Fractional Sliding Modes,” Math. Probl. Eng.,
2017, p. 3146231.

Muñoz-Vázquez,
A. J.
,
Parra-Veg,
V.
, and
Sánchez-Orta,
A.
, 2017, “
A Novel Continuous Fractional Sliding Mode Control,” Int. J. Syst. Sci.,
48(13), pp. 2901–2908.

[CrossRef]
Muñoz-Vázquez,
A. J.
,
Parra-Vega,
V.
,
Sánchez-Orta,
A.
, and
Romero-Galván,
G.
, 2017, “
Finite-Time Disturbance Observer Via Continuous Fractional Sliding Modes,” Trans. Inst. Meas. Control, epub.

Pisano,
A.
,
Rapaic,
M.
,
Jelecic,
Z.
, and
Usai,
E.
, 2010, “
Sliding Mode Control Approaches to the Robust Regulation of Linear Multivariable Fractional-Order Dynamics,” Int. J. Robust Nonlinear Control,
20(18), pp. 2045–2056.

[CrossRef]
Pisano,
A.
,
Rapaic,
M.
,
Usai,
E.
, and
Jelicic,
Z.
, 2012, “
Continuous Finite-Time Stabilization for Some Classes of Fractional Order Dynamics,” IEEE International Workshop on Variable Structure Systems (VSS), Mumbai, India, Jan. 12–14, pp. 16–21.

Jakovljević,
B.
,
Pisano,
A.
,
Rapaic,
M. R.
, and
Usai,
E.
, 2015, “
On the Sliding-Mode Control of Fractional-Order Nonlinear Uncertain Dynamics,” Int. J. Robust Nonlinear Control,
26(4), pp. 782–798.

[CrossRef]
Kamal,
S.
,
Raman,
A.
, and
Bandyopadhyay,
B.
, 2013, “
Finite-Time Stabilization of Fractional Order Uncertain Chain of Integrator: An Integral Sliding Mode Approach,” IEEE Trans. Autom. Control,
58(6), pp. 1597–1602.

[CrossRef]
Li,
Y.
,
Chen,
Y. Q.
, and
Podlubny,
I.
, 2009, “
Mittag-Leffler Stability of Fractional Order Nonlinear Dynamic Systems,” Automatica,
45(8), pp. 1965–1969.

[CrossRef]
Li,
Y.
,
Chen,
Y. Q.
, and
Podlubny,
I.
, 2010, “
Stability of Fractional-Order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag–Leffler Stability,” Comput. Math. Appl.,
59(5), pp. 1810–1821.

[CrossRef]
Zhang,
F.
,
Li,
C.
, and
Chen,
Y. Q.
, 2011, “
Asymptotical Stability of Nonlinear Fractional Differential System With Caputo Derivative,” Int. J. Differ. Equations,
2011, p. 635165.

Aguila-Camacho,
N.
,
Duarte-Mermoud,
M. A.
, and
Gallegos,
J. A.
, 2014, “
Lyapunov Functions for Fractional Order Systems,” Commun. Nonlinear Sci. Numer. Simul.,
19(9), pp. 951–2957.

[CrossRef]
Duarte-Mermoud,
M. A.
,
Aguila-Camacho,
N.
,
Gallegos,
J. A.
, and
Castro-Linares,
R.
, 2015, “
Using General Quadratic Lyapunov Functions to Prove Lyapunov Uniform Stability for Fractional Order Systems,” Commun. Nonlinear Sci. Numer. Simul.,
22(1–3), pp. 650–659.

[CrossRef]
Muñoz-Vázquez,
A. J.
,
Parra-Vega,
V.
,
Sánchez-Orta,
A.
, and
Romero-Galván,
G.
, 2018, “
Quadratic Lyapunov Functions for Stability Analysis in Fractional-Order Systems With Not Necessarily Differentiable Solutions,” Syst. Control Lett.,
116, pp. 15–19.

[CrossRef]
Schiessel,
H.
,
Metzler,
R.
,
Blumen,
A.
, and
Nonnenmacher,
T. F.
, 1995, “
Generalized Viscoelastic Models: Their Fractional Equations With Solutions,” J. Phys. A: Math. Gen.,
28(23), pp. 6567–6584.

[CrossRef]
Iftikhar,
M.
,
Riu,
D.
,
Druart,
F.
,
Rosini,
S.
,
Bultel,
Y.
, and
Retière,
N.
, 2006, “
Dynamic Modeling of Proton Exchange Membrane Fuel Cell Using Non-Integer Derivatives,” J. Power Sources,
160(2), pp. 1170–1182.

[CrossRef]
Magin,
R. L.
, 2010, “
Fractional Calculus Models of Complex Dynamics in Biological Tissues,” Comput. Math. Appl.,
59(5), pp. 1586–1593.

[CrossRef]
Humphrey,
J.
,
Schuler,
C.
, and
Rubinsky,
B.
, 1992, “
On the Use of the Weierstrass-Mandelbrot Function to Describe the Fractal Component of Turbulent Velocity,” Fluid Dyn. Res.,
9(1–3), pp. 81–95.

[CrossRef]
Machado,
J. T.
, 2013, “
Fractional Order Modelling of Dynamic Backlash,” Mechatronics,
23(7), pp. 741–745.

[CrossRef]
Mandelbrot,
B. B.
, and
Van Ness,
J. W.
, 1968, “
Fractional Brownian Motions, Fractional Noises and Applications,” SIAM Rev.,
10(4), pp. 422–437.

[CrossRef]
Carlson,
G.
, and
Halijak,
C.
, 1964, “
Approximation of Fractional Capacitors (1/s)

^{(1∕n)} by a Regular Newton Process,” IEEE Trans. Circuit Theory,
11(2), pp. 210–213.

[CrossRef]
Westerlund,
S.
, 1991, “
Dead Matter Has Memory!,” Phys. Scr.,
43(2), pp. 174–179.

[CrossRef]
Matignon, D.
, 1998, “
Stability Properties for Generalized Fractional Differential Systems,” ESAIM: Proc.,
5, pp. 145–158.

Utkin,
V.
, 1992, Sliding Modes in Control and Optimization,
Springer-Verlag,
Berlin.

[CrossRef]
Royden,
H. L.
, and
Fitzpatrick,
P.
, 1968, Real Analysis,
Macmillan,
New York.

Chen,
Y. Q.
,
Petrás,
I.
, and
Xue,
D.
, 2009, “
Fractional Order Control—A Tutorial,” IEEE American Control Conference (ACC), St. Louis, MO, June 10–12, pp. 1397–1411.

Oustaloup,
A.
,
Mathieu,
B.
, and
Lanusse,
P.
, 1995, “
The CRONE Control of Resonant Plants: Application to a Flexible Transmission,” Eur. J. Control,
1(2), pp. 113–121.

[CrossRef]