Oldham,
K. B.
, and
Spanier,
J.
, 1974, The Fractional Calculus,
Academic Press,
New York.

Podlubny,
I.
, 1999, Fractional Differential Equations,
Academic Press,
San Diego, CA.

[PubMed] [PubMed]
Kilbas,
A. A.
,
Srivastava,
H. M.
, and
Trujillo,
J. J.
, 2006, Theory and Applications of Fractional Differential Equations,
Elsevier,
San Diego, CA.

Bagley,
R. L.
, and
Torvik,
P. J.
, 1983, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity,” J. Rheol.,
27(3), pp. 201–210.

[CrossRef]
Baillie,
R. T.
, 1996, “
Long Memory Processes and Fractional Integration in Econometrics,” J. Econometrics,
73(1), pp. 5–59.

[CrossRef]
He,
J.
, 1998, “
Nonlinear Oscillation With Fractional Derivative and Its Applications,” International Conference Vibrating Engineering, Leuven, Belgium, Sept. 16–18, pp. 288–291.

He,
J.
, 1999, “
Some Applications of Nonlinear Fractional Differential Equations and Their Approximations,” Bull. Sci. Technol.,
15(2), pp. 86–90.

Mainardi,
F.
, 1997, “
Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics,” Fractals and Fractional Calculus in Continuum Mechanics,
A. Carpinteri
and
F. Mainardi
, eds.,
Springer-Verlag,
Wien, Austria, pp. 291–348.

[CrossRef]
Panda,
R.
, and
Dash,
M.
, 2006, “
Fractional Generalized Splines and Signal Processing,” Signal Process,
86(9), pp. 2340–2350.

[CrossRef]
Bohannan,
G.
, 2008, “
Analog Fractional Order Controller in Temperature and Motor Control Applications,” J. Vib. Control,
14(9–10), pp. 1487–1498.

[CrossRef]
Kumar,
S.
,
Kumar,
D.
,
Abbasbandy,
S.
, and
Rashidi,
M. M.
, 2014, “
Analytical Solution of Fractional Navier-Stokes Equation by Using Modified Laplace Decomposition Method,” Ain Shams Eng. J.,
5(2), pp. 569–574.

[CrossRef]
Li,
Y. Y.
,
Zhao,
Y.
,
Xie,
G. N.
,
Baleanu,
D.
,
Yang,
X. J.
, and
Zhao,
K.
, 2014, “
Local Fractional Poisson and Laplace Equations With Applications to Electrostatics in Fractal Domain,” Adv. Math. Phys.,
2014, p. 590574.

Arikoglu,
A.
, and
Ozkol,
I.
, 2009, “
Solution of Fractional Integro-Differential Equations by Using Fractional Differential Transform Method,” Chaos Solitons Fractals,
40(2), pp. 521–529.

[CrossRef]
Meerschaert,
M.
, and
Tadjeran,
C.
, 2006, “
Finite Difference Approximations for Two-Sided Space-Fractional Partial Differential Equations,” Appl. Numer. Math.,
56(1), pp. 80–90.

[CrossRef]
Suarez,
L.
, and
Shokooh,
A.
, 1997, “
An Eigenvector Expansion Method for the Solution of Motion Containing Fractional Derivatives,” ASME J. Appl. Mech.,
64(3), pp. 629–635.

[CrossRef]
Doha,
E. H.
,
Bhrawy,
A. H.
, and
Ezz-Eldien,
S. S.
, 2012, “
A New Jacobi Operational Matrix: An Application for Solving Fractional Differential Equations,” Appl. Math. Modell.,
36(10), pp. 4931–4943.

[CrossRef]
Li,
Y.
, and
Sun,
N.
, 2011, “
Numerical Solution of Fractional Differential Equations Using the Generalized Block Pulse Operational Matrix,” Comput. Math. Appl.,
62(3), pp. 1046–1054.

[CrossRef]
Tripathi,
M. P.
,
Baranwal,
V. K.
,
Pandey,
R. K.
, and
Singh,
O. P.
, 2013, “
A New Numerical Algorithm to Solve Fractional Differential Equations Based on Operational Matrix of Generalized Hat Functions,” Commun. Nonlinear Sci. Numer. Simul.,
18(6), pp. 1327–1340.

[CrossRef]
Momani,
S.
, and
Al-Khaled,
K.
, 2005, “
Numerical Solutions for Systems of Fractional Differential Equations by the Decomposition Method,” Appl. Math. Comput.,
162(3), pp. 1351–1365.

Quan,
X. J.
,
Han,
H. L.
, and
Wang,
J.
, 2014, “
The Adomian Decomposition Method for Sloving Nonlinear Volterra Integral Equations of Fractional Order,” J. Jiangxi Normal Univ. (Natural Sci. Ed.),
5, p. 18.

Odibat,
Z.
, and
Momani,
S.
, 2006, “
Application of Variational Iteration Method to Nonlinear Differential Equations of Fractional Order,” Int. J. Nonlinear Sci. Numer. Simul.,
7(1), pp. 27–34.

[CrossRef]
Abdulaziz,
O.
,
Hashim,
I.
, and
Momani,
S.
, 2008, “
Solving Systems of Fractional Differential Equations by Homotopy-Perturbation Method,” Phys. Lett. A,
372(4), pp. 451–459.

[CrossRef]
Hashim,
I.
,
Abdulaziz,
O.
, and
Momani,
S.
, 2009, “
Homotopy Analysis Method for Fractional IVPs,” Commun. Nonlinear Sci. Numer. Simul.,
14(3), pp. 674–684.

[CrossRef]
Baleanu,
D.
,
Darzi,
R.
, and
Agheli,
B.
, 2018, “
A Reliable Mixed Method for Singular Integro-Differential Equations of Non-Integer Order,” Math. Modell. Natural Phenom.,
13(1). p. 4.

Yin,
Y.
,
Yanping,
C.
, and
Yunqing,
H.
, 2014, “
Convergence Analysis of the Jacobi Spectral-Collocation Method for Fractional Integro-Differential Equations,” Acta Math. Sci.,
34(3), pp. 673–690.

[CrossRef]
Mokhtary,
P.
, 2015, “
Reconstruction of Exponentially Rate of Convergence to Legendre Collocation Solution of a Class of Fractional Integro-Differential Equations,” J. Comput. Appl. Math.,
279, pp. 145–158.

[CrossRef]
Bhrawy,
A. H.
, and
Zaky,
M. A.
, 2015, “
A Shifted Fractional-Order Jacobi Orthogonal Functions: An Application for System of Fractional Differential Equations,” Appl. Math. Modell.,
40(2), pp. 832–845.

Bhrawy,
B. A. H.
,
Alhamed,
Y. A.
, and
Baleanu,
D.
, 2014, “
New Specral Techniques for Systems of Fractional Differential Equations Using Fractional-Order Generalized Laguerre Orthogonal Functions,” Fractional Calculus Appl. Anal.,
17(4), pp. 1138–1157.

Kazem,
S.
,
Abbasbandy,
S.
, and
Kumar,
S.
, 2013, “
Fractional-Order Legendre Functions for Solving Fractional-Order Differential Equations,” Appl. Math. Modell.,
37(7), pp. 5498–5510.

[CrossRef]
Doha,
E. H.
,
Bhrawy,
A. H.
,
Baleanu,
D.
,
Ezz-Eldien,
S. S.
, and
Hafez,
R. M.
, 2015, “
An Efficient Numerical Scheme Based on the Shifted Orthonormal Jacobi Polynomials for Solving Fractional Optimal Control Problems,” Adv. Differ. Equations,
2015(1), pp. 1–17.

[CrossRef]
Saeedi,
H.
, and
Mohseni Moghadam,
M.
, 2011, “
Numerical Solution of Nonlinear Volterra Integro-Differential Equations of Arbitrary Order by CAS Wavelets,” Commun. Nonlinear. Sci. Numer. Simul,
16(3), pp. 1216–1226.

[CrossRef]
Saeedi,
H.
,
Moghadam,
M. M.
,
Mollahasani,
M.
, and
Chuev,
G. N.
, 2011, “
A CAS Wavelet Method for Solving Nonlinear Fredholm Integro-Differential Equations of Fractional Order,” Commun. Nonlinear. Sci. Numer. Simul.,
16(3), pp. 1154–1163.

[CrossRef]
Zhu,
L.
, and
Fan,
Q.
, 2012, “
Solving Fractional Nonlinear Fredholm Integro-Differential Equations by the Second Kind Chebyshev Wavelet,” Commun. Nonlinear. Sci. Numer. Simul.,
17(6), pp. 2333–2341.

[CrossRef]
Zhu,
L.
, and
Fan,
Q.
, 2013, “
Numerical Solution of Nonlinear Fractional-Order Volterra Integro-Differential Equations by SCW,” Commun. Nonlinear. Sci. Numer. Simul.,
18(5), pp. 1203–1213.

[CrossRef]
Mohammadi,
F.
, 2014, “
Numerical Solution of Bagley-Torvik Equation Using Chebyshev Wavelet Operational Matrix of Fractional Derivative,” Int. J. Adv. Appl. Math. Mech.,
2(1), pp. 83–91.

Shiralashetti,
S. C.
, and
Deshi,
A. B.
, 2016, “
An Efficient Haar Wavelet Collocation Method for the Numerical Solution of Multi-Term Fractional Differential Equations,” Nonlinear Dyn.,
83(1–2), pp. 293–303.

[CrossRef]
Wang,
Y.
, and
Fan,
Q.
, 2012, “
The Second Kind Chebyshev Wavelet Method for Solving Fractional Differential Equations,” Appl. Math. Comput.,
218(17), pp. 8592–8601.

Heydari,
M. H.
,
Hooshmandasl,
M. R.
, and
Mohammadi,
F.
, 2014, “
Two-Dimensional Legendre Wavelets for Solving Time-Fractional Telegraph Equation,” Adv. Appl. Math. Mech.,
6(02), pp. 247–260.

[CrossRef]
Mohammadi,
F.
, and
Adhami,
P.
, 2016, “
Numerical Study of Stochastic Volterra-Fredholm Integral Equations by Using Second Kind Chebyshev Wavelets,” Random Operators Stochastic Equations,
24(2), pp. 129–141.

[CrossRef]
Razzaghi,
M.
, and
Yousefi,
S.
, 2001, “
The Legendre Wavelets Operational Matrix of Integration,” Int. J. Syst. Sci.,
32 (4), pp. 495–502.

[CrossRef]
Mohammadi,
F.
, and
Hosseini,
M. M.
, 2011, “
A Comparative Study of Numerical Methods for Solving Quadratic Riccati Differential Equations,” J. Franklin Inst.,
348(2), pp. 156–164.

[CrossRef]
Mohammadi,
F.
, 2011, “
A New Legendre Wavelet Operational Matrix of Derivative and Its Applications in Solving the Singular Ordinary Differential Equations,” J. Franklin Inst.,
348 (8), pp. 1787–1796.

[CrossRef]
Mohammadi,
F.
,
Hosseini,
M. M.
, and
Mohyud-Din,
S. T.
, 2011, “
Legendre Wavelet Galerkin Method for Solving Ordinary Differential Equations With Non-Analytic Solution,” Int. J. Syst. Sci.,
42(4), pp. 579–585.

[CrossRef]
Mohammadi,
F.
, 2016, “
A Computational Wavelet Method for Numerical Solution of Stochastic Volterra-Fredholm Integral Equations,” Wavelet Linear Algebra,
3(1), pp. 13–25.

http://wala.vru.ac.ir/article_19924.html
Mohammadi,
F.
, and
Ciancio,
A.
, 2017, “
Wavelet-Based Numerical Method for Solving Fractional Integro-Differential Equation With a Weakly Singular Kernel,” Wavelet Linear Algebra,
4(1), pp. 53–73.

Xu,
X.
, and
Xu,
D.
, 2017, “
Legendre Wavelets Method for Approximate Solution of Fractional-Order Differential Equations Under Multi-Point Boundary Conditions,” Int. J. Comput. Math.,
95(5), pp. 998–1014.

Liu,
N.
, and
Lin,
E. B.
, 2010, “
Legendre Wavelet Method for Numerical Solutions of Partial Differential Equations,” Numer. Methods Partial Differ. Equations,
26(1), pp. 81–94.

[CrossRef]
Canuto,
C.
,
Hussaini,
M.
,
Quarteroni,
A.
, and
Zang,
T.
, 1988, Spectral Methods in Fluid Dynamics,
Springer, Berlin.

[CrossRef]