Marsden,
J. E.
, and
West,
M.
, 2001, “
Discrete Mechanics and Variational Integrators,” Acta Numer.,
10, pp. 357–514.

[CrossRef]
Wendlandt,
J. M.
, and
Marsden,
J. E.
, 1997, “
Mechanical Integrators Derived From a Discrete Variational Principle,” Phys. D: Nonlinear Phenom.,
106(3–4), pp. 223–246.

[CrossRef]
Leyendecker,
S.
,
Marsden,
J. E.
, and
Ortiz,
M.
, 2008, “
Variational Integrators for Constrained Dynamical Systems,” ZAMM-J. Appl. Math. Mech.,
88(9), pp. 677–708.

[CrossRef]
Hairer,
E.
,
Lubich,
C.
, and
Wanner,
G.
, 2006, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations,
Springer, Berlin.

Leimkuhler,
B.
, and
Reich,
S.
, 1994, “
Symplectic Integration of Constrained Hamiltonian Systems,” Math. Comput.,
63(208), pp. 589–605.

[CrossRef]
Leimkuhler,
B.
, and
Patrick,
G. W.
, 1996, “
A Symplectic Integrator for Riemannian Manifolds,” J. Nonlinear Sci.,
6(4), pp. 367–384.

[CrossRef]
McLachlan,
R. I.
, and
Quispel,
G. R. W.
, 2006, “
Geometric Integrators for ODEs,” J. Phys. A: Math. General,
39(19), pp. 5251–5285.

[CrossRef]
Reich,
S.
, 1994, “
Momentum Conserving Symplectic Integrators,” Phys. D: Nonlinear Phenom.,
76(4), pp. 375–383.

[CrossRef]
Kane,
C.
,
Marsden,
J. E.
,
Ortiz,
M.
, and
West,
M.
, 2000, “
Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems,” Int. J. Numer. Methods Eng.,
49(10), pp. 1295–1325.

[CrossRef]
Lew,
A.
,
Marsden,
J. E.
,
Ortiz,
M.
, and
West,
M.
, 2004, “
An Overview of Variational Integrators,” Finite Element Methods: 1970's and Beyond, International Center for Numerical Methods in Engineering (CIMNE), Barcelona, Spain, pp. 98–115.

Lew,
A.
,
Marsden,
J. E.
,
Ortiz,
M.
, and
West,
M.
, 2004, “
Variational Time Integrators,” Int. J. Numer. Methods Eng.,
60(1), pp. 153–212.

[CrossRef]
Ober-Blöbaum,
S.
,
Junge,
O.
, and
Marsden,
J. E.
, 2011, “
Discrete Mechanics and Optimal Control: An Analysis,” ESAIM: Control, Optimisation Calculus Variations,
17(2), pp. 322–352.

[CrossRef]
Leyendecker,
S.
,
Ober-Blöbaum,
S.
,
Marsden,
J. E.
, and
Ortiz,
M.
, 2010, “
Discrete Mechanics and Optimal Control for Constrained Systems,” Optim. Control Appl. Methods,
31(6), pp. 505–528.

[CrossRef]
Kobilarov,
M.
,
Marsden,
J. E.
, and
Sukhatme,
G. S.
, 2010, “
Geometric Discretization of Nonholonomic Systems With Symmetries,” Discrete Contin. Dyn. Syst. Ser. S,
3(1), pp. 61–84.

Fetecau,
R. C.
,
Marsden,
J. E.
,
Ortiz,
M.
, and
West,
M.
, 2003, “
Nonsmooth Lagrangian Mechanics and Variational Collision Integrators,” SIAM J. Appl. Dyn. Syst.,
2(3), pp. 381–416.

[CrossRef]
Bou-Rabee,
N.
, and
Owhadi,
H.
, 2008, “
Stochastic Variational Integrators,” IMA J. Numer. Anal.,
29(2), pp. 421–443.

[CrossRef]
Tao,
M.
,
Owhadi,
H.
, and
Marsden,
J. E.
, 2010, “
Nonintrusive and Structure Preserving Multiscale Integration of Stiff ODEs, SDEs, and Hamiltonian Systems With Hidden Slow Dynamics Via Flow Averaging,” Multiscale Model. Simul.,
8(4), pp. 1269–1324.

[CrossRef]
Celledoni,
E.
, and
Owren,
B.
, 2003, “
Lie Group Methods for Rigid Body Dynamics and Time Integration on Manifolds,” Comput. Methods Appl. Mech. Eng.,
192(3–4), pp. 421–438.

[CrossRef]
Leok,
M.
, 2007, “
An Overview of Lie Group Variational Integrators and Their Applications to Optimal Control,” International Conference on Scientific Computation and Differential Equations, Saint-Malo, France, July 9–13, p. 1.

Bou-Rabee,
N.
, and
Marsden,
J. E.
, 2009, “
Hamilton–Pontryagin Integrators on Lie Groups Part I: Introduction and Structure-Preserving Properties,” Found. Comput. Math.,
9(2), pp. 197–219.

[CrossRef]
Kobilarov,
M. B.
, and
Marsden,
J. E.
, 2011, “
Discrete Geometric Optimal Control on Lie Groups,” IEEE Trans. Rob.,
27(4), pp. 641–655.

[CrossRef]
Arnold,
M.
,
Cardona,
A.
, and
Brüls,
O.
, 2016, “
A Lie Algebra Approach to Lie Group Time Integration of Constrained Systems,” Structure-Preserving Integrators in Nonlinear Structural Dynamics and Flexible Multibody Dynamics,
Springer, Berlin, pp. 91–158.

[CrossRef]
Kobilarov,
M.
,
Crane,
K.
, and
Desbrun,
M.
, 2009, “
Lie Group Integrators for Animation and Control of Vehicles,” ACM Trans. Graph. (TOG),
28(2), pp. 16:1–16:14.

[CrossRef]
Lee,
T.
,
Leok,
M.
, and
McClamroch,
N. H.
, 2017, Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds,
Springer, Berlin.

Junge,
O.
,
Marsden,
J. E.
, and
Ober-Blöbaum,
S.
, 2005, “
Discrete Mechanics and Optimal Control,” IFAC Proc. Vol.,
38(1), pp. 538–543.

[CrossRef]
Betts,
J. T.
, 2010, Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd ed,
Society for Industrial and Applied Mathematics, Cambridge University Press, New York.

[CrossRef]
Björkenstam,
S.
,
Carlson,
J. S.
, and
Lennartson,
B.
, 2015, “
Exploiting Sparsity in the Discrete Mechanics and Optimal Control Method With Application to Human Motion Planning,” IEEE International Conference on Automation Science and Engineering (CASE), Gothenburg, Sweden, Aug. 24–28, pp. 769–774.

Featherstone,
R.
, 1983, “
The Calculation of Robot Dynamics Using Articulated-Body Inertias,” Int. J. Rob. Res.,
2(1), pp. 13–30.

[CrossRef]
Walker,
M. W.
, and
Orin,
D. E.
, 1982, “
Efficient Dynamic Computer Simulation of Robotic Mechanisms,” ASME J. Dyn. Syst. Meas. Control,
104(3), pp. 205–211.

[CrossRef]
Luh,
J. Y.
,
Walker,
M. W.
, and
Paul,
R. P.
, 1980, “
On-Line Computational Scheme for Mechanical Manipulators,” ASME J. Dyn. Syst. Meas. Control,
102(2), pp. 69–76.

[CrossRef]
Featherstone,
R.
, 2008, Rigid Body Dynamics Algorithms,
Springer, Berlin.

[CrossRef]
Jain,
A.
, 2010, Robot and Multibody Dynamics: Analysis and Algorithms,
Springer Science & Business Media, Berlin.

Johnson,
E. R.
, and
Murphey,
T. D.
, 2009, “
Scalable Variational Integrators for Constrained Mechanical Systems in Generalized Coordinates,” IEEE Trans. Rob.,
25(6), pp. 1249–1261.

[CrossRef]
Johnson,
E. R.
, and
Murphey,
T. D.
, 2008, “
Discrete and Continuous Mechanics for Tree Representations of Mechanical Systems,” IEEE International Conference on Robotics and Automation (ICRA), Pasadena, CA, May 19–23, pp. 1106–1111.

Neuroscience and Robotics Lab, 2017, “
Trep: Mechanical Simulation and Optimal Control,” Northwestern University, Evanston, IL, accessed May 23, 2017,

http://murpheylab.github.io/trep/
Featherstone,
R.
, and
Orin,
D.
, 2000, “
Robot Dynamics: Equations and Algorithms,” IEEE International Conference on Robotics and Automation (ICRA), San Francisco, CA, Apr. 24–28, pp. 826–834.

Park,
F. C.
,
Bobrow,
J. E.
, and
Ploen,
S. R.
, 1995, “
A Lie Group Formulation of Robot Dynamics,” Int. J. Rob. Res.,
14(6), pp. 609–618.

[CrossRef]
Griewank,
A.
, and
Walther,
A.
, 2008, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation,
SIAM, Philadelphia, PA.

[CrossRef]
Hall,
B.
, 2015, Lie Groups, Lie Algebras, and Representations: An Elementary Introduction,
Springer, Berlin.

[CrossRef]
Murray,
R. M.
,
Li,
Z.
,
Sastry,
S. S.
, and
Sastry,
S. S.
, 1994, A Mathematical Introduction to Robotic Manipulation,
CRC press, Boca Raton, FL.

Selig,
J. M.
, 2004, Geometric Fundamentals of Robotics,
Springer Science & Business Media, Berlin.

Marsden,
J. E.
, and
Ratiu,
T.
, 2013, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Vol.
17,
Springer Science & Business Media, Berlin.

Iserles,
A.
,
Munthe-Kaas,
H. Z.
,
Nørsett,
S. P.
, and
Zanna,
A.
, 2000, “
Lie-Group Methods,” Acta Numer.,
9, pp. 215–365.

[CrossRef]
Betts,
J. T.
, 1998, “
Survey of Numerical Methods for Trajectory Optimization,” J. Guidance, Control, Dynamics,
21(2), pp. 193–207.

[CrossRef]
Diehl,
M.
,
Bock,
H. G.
,
Diedam,
H.
, and
Wieber,
P.-B.
, 2006, “
Fast Direct Multiple Shooting Algorithms for Optimal Robot Control,” Fast Motions in Biomechanics and Robotics,
Springer, Berlin, pp. 65–93. In

[CrossRef]
Bell, B. M.
, 2017, “
CppAD: A Package for C++ Algorithmic Differentiation,” Computational Infrastructure for Operations Research, Reisterstown, MD, accessed July 17, 2018,

http://www.coin-or.org/CppAD
Koch,
M. W.
,
Ringkamp,
M.
, and
Leyendecker,
S.
, 2016, “
Discrete Mechanics and Optimal Control of Walking Gaits,” ASME J. Comput. Nonlinear Dyn.,
12(2), p. 021006.

[CrossRef]
Falck,
A.-C.
,
Örtengren,
R.
, and
Högberg,
D.
, 2010, “
The Impact of Poor Assembly Ergonomics on Product Quality: A Cost-Benefit Analysis in Car Manufacturing,” Hum. Factors Ergonom. Manuf. Service Ind.,
20(1), pp. 24–41.

[CrossRef]
Falck,
A.-C.
, and
Rosenqvist,
M.
, 2014, “
A Model for Calculation of the Costs of Poor Assembly Ergonomics (Part 1),” Int. J. Ind. Ergonom.,
44(1), pp. 140–147.

[CrossRef]
Lämkull,
D.
,
Hanson,
L.
, and
Örtengren,
R.
, 2008, “
Uniformity in Manikin Posturing: A Comparison Between Posture Prediction and Manual Joint Manipulation,” Int. J. Human Factors Modell. Simul.,
1(2), pp. 225–243.

[CrossRef]
Högberg,
D.
,
Hanson,
L.
,
Bohlin,
R.
, and
Carlson,
J. S.
, 2016, “
Creating and Shaping the DHM Tool IMMA for Ergonomic Product and Production Design,” Int. J. Digital Hum.,
1(2), pp. 132–152.

[CrossRef]
Bohlin,
R.
,
Delfs,
N.
,
Hanson,
L.
,
Högberg,
D.
, and
Carlson,
J.
, 2011, “
Unified Solution of Manikin Physics and Positioning—Exterior Root by Introduction of Extra Parameters,” First International Symposium on Digital Human Modeling (DHM), Lyon, France, June 14–16.

Delfs,
N.
,
Bohlin,
R.
,
Gustafsson,
S.
,
Mårdberg,
P.
, and
Carlson,
J. S.
, 2014, “
Automatic Creation of Manikin Motions Affected by Cable Forces,” Proc. CIRP,
23, pp. 35–40.

[CrossRef]
Pandy,
M. G.
,
Anderson,
F. C.
, and
Hull,
D.
, 1992, “
A Parameter Optimization Approach for the Optimal Control of Large-Scale Musculoskeletal Systems,” ASME J. Biomech. Eng.,
114(4), pp. 450–460.

[CrossRef]
Lo,
J.
, and
Metaxas,
D.
, 1999, “
Recursive Dynamics and Optimal Control Techniques for Human Motion Planning,” IEEE Computer Animation, pp. 220–234.

Xiang,
Y.
,
Chung,
H.-J.
,
Kim,
J. H.
,
Bhatt,
R.
,
Rahmatalla,
S.
,
Yang,
J.
,
Marler,
T.
,
Arora,
J. S.
, and
Abdel-Malek,
K.
, 2010, “
Predictive Dynamics: An Optimization-Based Novel Approach for Human Motion Simulation,” Struct. Multidiscip. Optim.,
41(3), pp. 465–479.

[CrossRef]
Maas,
R.
, and
Leyendecker,
S.
, 2013, “
Biomechanical Optimal Control of Human Arm Motion,” Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.,
227(4), pp. 375–389.

Maas,
R.
, and
Leyendecker,
S.
, 2012, “
Optimal Control of Biomechanical Motion Using Physiologically Motivated Cost Functions,” Second Joint International Conference on Multibody System Dynamics, Stuttgart, Germany, May 29–June 1.

Betts,
J. T.
, and
Frank,
P. D.
, 1994, “
A Sparse Nonlinear Optimization Algorithm,” J. Optim. Theory Appl.,
82(3), pp. 519–541.

[CrossRef]
Gerdts,
M.
,
Henrion,
R.
,
Hömberg,
D.
, and
Landry,
C.
, 2012, “
Path Planning and Collision Avoidance for Robots,” Numer. Algebra, Control Optim.,
2(3), pp. 437–463.

[CrossRef]
Roller,
M.
,
Björkenstam,
S.
,
Linn,
J.
, and
Leyendecker,
S.
, 2017, “
Optimal Control of a Biomechanical Multibody Model for the Dynamic Simulation of Working Tasks,” ECCOMAS Thematic Conference on Multibody Dynamics, Prague, Czech Republic, June 19–22, pp. 817–826.

http://www.ltd.tf.uni-erlangen.de/Team/Leyendecker/Arxiv/Conference/ECCOMAS2017_MR_SL_biomechanical.pdf
Stewart,
D. E.
, 2000, “
Rigid-Body Dynamics With Friction and Impact,” SIAM Rev.,
42(1), pp. 3–39.

[CrossRef]
Harker,
P. T.
, and
Pang,
J.-S.
, 1990, “
Finite-Dimensional Variational Inequality and Nonlinear Complementarity Problems: A Survey of Theory, Algorithms and Applications,” Math. Program.,
48(1–3), pp. 161–220.

[CrossRef]
Anitescu,
M.
, 2005, “
Mathematical Programs With Equilibrium Constraints and Applications to Control,” Argonne National Laboratory, Lemont, IL, Report No. ANL/MCS-P1247-0405.

http://www.mcs.anl.gov/papers/P1247.pdf
Posa,
M.
,
Cantu,
C.
, and
Tedrake,
R.
, 2014, “
A Direct Method for Trajectory Optimization of Rigid Bodies Through Contact,” Int. J. Rob. Res.,
33(1), pp. 69–81.

[CrossRef]
Wang,
X.
,
Han,
D.
,
Yu,
C.
, and
Zheng,
Z.
, 2012, “
The Geometric Structure of Unit Dual Quaternion With Application in Kinematic Control,” J. Math. Anal. Appl.,
389(2), pp. 1352–1364.

[CrossRef]
Baerlocher,
P.
, and
Boulic,
R.
, 2001, “
Parametrization and Range of Motion of the Ball-and-Socket Joint,” Deformable Avatars,
N. Magnenat-Thalmann
and
D. Thalmann
, eds., Vol.
68,
Springer, Berlin, pp. 180–190.

[CrossRef]