Research Papers

Computational Rod Model With User-Defined Nonlinear Constitutive Laws

[+] Author and Article Information
Soheil Fatehiboroujeni

Department of Mechanical Engineering,
University of California, Merced,
Merced, CA 95343
e-mail: sfatehiboroujeni@ucmerced.edu

Harish J. Palanthandalam-Madapusi

Mechanical Engineering,
Indian Institute of Technology,
Gandhinagar Palaj,
Gandhinagar 382355, India
e-mail: harish@iitgn.ac.in

Sachin Goyal

Department of Mechanical Engineering,
University of California, Merced,
Merced, CA 95343
e-mail: sgoyal2@ucmerced.edu

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received November 28, 2017; final manuscript received July 25, 2018; published online August 22, 2018. Assoc. Editor: Zdravko Terze.

J. Comput. Nonlinear Dynam 13(10), 101006 (Aug 22, 2018) (8 pages) Paper No: CND-17-1525; doi: 10.1115/1.4041028 History: Received November 28, 2017; Revised July 25, 2018

Computational rod models have emerged as efficient tools to simulate the bending and twisting deformations of a variety of slender structures in engineering and biological applications. The dynamics of such deformations, however, strongly depends on the constitutive law in bending and torsion that, in general, may be nonlinear, and vary from material to material. Jacobian-based computational rod models require users to change the Jacobian if the functional form of the constitutive law is changed, and hence are not user-friendly. This paper presents a scheme that automatically modifies the Jacobian based on any user-defined constitutive law without requiring symbolic differentiation. The scheme is then used to simulate force-extension behavior of a coiled spring with a softening constitutive law.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Simo, J. C. , Marsden, J. E. , and Krishnaprasad, P. S. , 1988, “ The Hamiltonian Structure of Nonlinear Elasticity: The Material and Convective Representations of Solids, Rods, and Plates,” Arch. Ration. Mech. Anal., 104(2), pp. 125–183. [CrossRef]
Goyal, S. , Perkins, N. C. , and Lee, C. L. , 2005, “ Nonlinear Dynamics and Loop Formation in Kirchhoff Rods With Implications to the Mechanics of DNA and Cables,” J. Comput. Phys., 209(1), pp. 371–389. [CrossRef]
Hwang, W. , 2015, “ Biofilament Dynamics: Line-to-Rod-Level Descriptions,” Multiscale Modeling in Biomechanics and Mechanobiology, S. De , W. Hwang , and E. Kuhl , eds., Springer, London, pp. 63–83.
Neukirch, S. , and van der Heijden, G. , 2002, “ Geometry and Mechanics of Uniform n-Plies: From Engineering Ropes to Biological Filaments,” J. Elasticity, 69(1/3), pp. 41–72. [CrossRef]
Klapper, I. , 1996, “ Biological Applications of the Dynamics of Twisted Elastic Rods,” J. Comput. Phys., 125(2), pp. 325–337. [CrossRef]
Lillian, T. D. , Goyal, S. , Kahn, J. D. , Meyhfer, E. , and Perkins, N. , 2008, “ Computational Analysis of Looping of a Large Family of Highly Bent {DNA} by Laci,” Biophys. J., 95(12), pp. 5832–5842. [CrossRef] [PubMed]
Hoffman, K. A. , 2004, “ Methods for Determining Stability in Continuum Elastic-Rod Models of DNA,” Philos. Trans. R. Soc. London A: Math., Phys. Eng. Sci., 362(1820), pp. 1301–1315. [CrossRef]
Goyal, S. , Perkins, N. C. , and Meiners, J. C. , 2008, “ Resolving the Sequence-Dependent Stiffness of DNA Using Cyclization Experiments and a Computational Rod Model,” ASME J. Comput. Nonlinear Dyn., 3(1), p. 011003. [CrossRef]
Sept, D. , and MacKintosh, F. C. , 2010, “ Microtubule Elasticity: Connecting All-Atom Simulations With Continuum Mechanics,” Phys. Rev. Lett., 104(1), p. 018101. [CrossRef] [PubMed]
Hawkins, T. , Mirigian, M. , Yasar, M. S. , and Ross, J. L. , 2010, “ Mechanics of Microtubules,” J. Biomech., 43(1), pp. 23–30. [CrossRef] [PubMed]
Hilfinger, A. , Chattopadhyay, A. K. , and Jülicher, F. , 2009, “ Nonlinear Dynamics of Cilia and Flagella,” Phys. Rev. E, 79(5), p. 051918. [CrossRef]
Qin, Z. , Buehler, M. J. , and Kreplak, L. , 2010, “ A Multi-Scale Approach to Understand the Mechanobiology of Intermediate Filaments,” J. Biomech., 43(1), pp. 15–22. [CrossRef] [PubMed]
Goldstein, R. E. , and Goriely, A. , 2006, “ Dynamic Buckling of Morphoelastic Filaments,” Phys. Rev. E, 74(1), p. 010901. [CrossRef]
Odijk, T. , 1998, “ Microfibrillar Buckling Within Fibers Under Compression,” J. Chem. Phys., 108(16), pp. 6923–6928. [CrossRef]
Kumar, A. , Mukherjee, S. , Paci, J. T. , Chandraseker, K. , and Schatz, G. C. , 2011, “ A Rod Model for Three Dimensional Deformations of Single-Walled Carbon Nanotubes,” Int. J. Solids Struct., 48(20), pp. 2849–2858. [CrossRef]
Chen, Y. , Dorgan, B. L. , McIlroy, D. N. , and Eric Aston, D. , 2006, “ On the Importance of Boundary Conditions on Nanomechanical Bending Behavior and Elastic Modulus Determination of Silver Nanowires,” J. Appl. Phys., 100(10), p. 104301.
Calladine, C. R. , Drew, H. R. , Luisi, B. F. , and Travers, A. A. , 2004, Understanding DNA, the Molecule and How It Works, Elsevier Academic Press, Amsterdam, The Netherlands.
Goyal, S. , Lillian, T. , Blumberg, S. , Meiners, J. C. , Meyhofer, E. , and Perkins, N. C. , 2007, “ Intrinsic Curvature of DNA Influences LacR-Mediated Looping,” Biophys. J., 93(12), pp. 4342–4359. [CrossRef] [PubMed]
Goyal, S. , and Perkins, N. , 2008, “ Looping Mechanics of Rods and DNA with Non-Homogeneous and Discontinuous Stiffness,” Int. J. Non-Linear Mech., 43(10), pp. 1121–1129. [CrossRef]
Goyal, S. , Perkins, N. , and Lee, C. L. , 2008, “ Non-Linear Dynamic Intertwining of Rods With Self-Contact,” Int. J. Non-Linear Mech., 43(1), pp. 65–73. [CrossRef]
Cloutier, T. E. , and Widom, J. , 2004, “ Spontaneous Sharp Bending of Double-Stranded DNA,” Mol. Cell, 14(3), pp. 355–362. [CrossRef] [PubMed]
Wiggins, P. A. , Phillips, R. , and Nelson, P. C. , 2005, “ Exact Theory of Kinkable Elastic Polymers,” Phys. Rev. E, 71(2), p. 021909.
Swati Verma, G. S. , and Palanthandalam-Madapusi, H. J. , 2012, “ Simulation Based Analysis of Constitutive Behavior of Microtubules,” Asian Conference on Mechanics of Functional Materials and Structures, New Delhi, India, Dec. 5–8, pp. 679–681.
Fatehiboroujeni, S. , and Goyal, S. , 2016, “ Deriving Mechanical Properties of Microtubules From Molecular Simulations,” Biophys. J., 110(Suppl. 1), p. 129A. [CrossRef]
Fosdick, R. L. , and James, R. D. , 1981, “ The Elastica and the Problem of the Pure Bending for a Non-Convex Stored Energy Function,” J. Elasticity, 11(2), pp. 165–186. [CrossRef]
Gupta, P. , and Kumar, A. , 2017, “ Effect of Material Nonlinearity on Spatial Buckling of Nanorods and Nanotubes,” J. Elasticity, 126(2), pp. 155–171. [CrossRef]
Smith, M. L. , and Healey, T. J. , 2008, “ Predicting the Onset of DNA Supercoiling Using a Nonlinear Hemitropic Elastic Rod,” Int. J. Non-Linear Mech., 43(10), pp. 1020–1028. [CrossRef]
Haslach, H. W., Jr. , 1985, “ Post-Buckling Behavior of Columns With Non-Linear Constitutive Equations,” Int. J. Non-Linear Mech., 20(1), pp. 53–67. [CrossRef]
Baczynski, K. K. , 2009, “ Buckling Instabilities of Semiflexible Filaments in Biological Systems,” Ph.D. dissertation, University of Potsdam, Potsdam, Germany https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/deliver/index/docId/3557/file/baczynski_diss.pdf.
Avril, S. , Bonnet, M. , Bretelle, A.-S. , Grédiac, M. , Hild, F. , Ienny, P. , Latourte, F. , Lemosse, D. , Pagano, S. , Pagnacco, E. , and Pierron, F. , 2008, “ Overview of Identification Methods of Mechanical Parameters Based on Full-Field Measurements,” Exp. Mech., 48(4), pp. 381–402. [CrossRef]
Bonnet, M. , and Constantinescu, A. , 2005, “ Inverse Problems in Elasticity,” Inverse Probl., 21(2), p. R1. [CrossRef]
Hinkle, A. R. , Goyal, S. , and Palanthandalam-Madapusi, H. J. , 2009, “ An Estimation Method of a Constitutive-Law for the Rod Model of DNA Using Discrete-Structure Simulations,” ASME Paper No. DETC2009–87763.
Palanthandalam-Madapusi, H. J. , and Goyal, S. , 2011, “ Robust Estimation of Nonlinear Constitutive Law From Static Equilibrium Data for Modeling the Mechanics of DNA,” Automatica, 47(6), pp. 1175–1182. [CrossRef]
Goyal, S. , 2006, “ A Dynamic Rod Model to Simulate Mechanics of Cables and DNA,” Ph.D. dissertation, University of Michigan, Ann Arbor, MI http://hdl.handle.net/2027.42/126037.
Neidinger, R. D. , 2010, “ Introduction to Automatic Differentiation and MATLAB Object-Oriented Programming,” SIAM Rev., 52(3), pp. 545–563. [CrossRef]
Kirchhoff, G. , 1859, “ Uber Das Gleichgewicht Und Die Bewegung Eines Unendlich Dunnen Elastischen Stabes,” J. Reine Angew. Math. (Crelle), 1859(56), pp. 285–343. [CrossRef]
Chung, J. , and Hulbert, G. M. , 1993, “ A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation—The Generalized-Alpha Method,” ASME J. Appl. Mech., 60(2), pp. 371–375. [CrossRef]
Bottasso, C. L. , and Borri, M. , 1998, “ Integrating Finite Rotations,” Comput. Methods Appl. Mech. Eng., 164(3–4), pp. 307–331. [CrossRef]
Simo, J. , and Vu-Quoc, L. , 1986, “ A Three-Dimensional Finite-Strain Rod Model—Part II: Computational Aspects,” Comput. Methods Appl. Mech. Eng., 58(1), pp. 79–116. [CrossRef]
Zhang, Z. , Qi Zhaohui, W. Z. , and Huiqing, F. , 2015, “ A Spatial Euler-Bernoulli Beam Element for Rigid-Flexible Coupling Dynamic Analysis of Flexible Structures,” J. Shock Vib., 2015, p. 208127.
Cardona, A. , and Geradin, M. , 1988, “ A Beam Finite Element Non-Linear Theory With Finite Rotations,” Int. J. Numer. Methods Eng., 26(11), pp. 2403–2438. [CrossRef]
Fan, W. , and Zhu, W. D. , 2018, “ An Accurate Singularity-Free Geometrically Exact Beam Formulation Using Euler Parameters,” Nonlinear Dyn., 91(2), pp. 1095–1112. [CrossRef]
Sun, Y. , Leonard, J. W. , and Chiou, R. B. , 1994, “ Simulation of Unsteady Oceanic Cable Deployment by Direct Integration With Suppression,” Ocean Eng., 21(3), pp. 243–256. [CrossRef]
Maghsoodi, A. , Chatterjee, A. , Andricioaei, I. , and Perkins, N. C. , 2016, “ A First Model of the Dynamics of the Bacteriophage t4 Injection Machinery,” ASME J. Comput. Nonlinear Dyn., 11(4), p. 041026. [CrossRef]


Grahic Jump Location
Fig. 1

The motion of each cross section of the rod at length s and time t is determined by tracking the transformations of the body-fixed frame âi(s,t) with respect to the inertial frame of reference êi

Grahic Jump Location
Fig. 2

The algorithm of the numerical scheme. The guessed solution for all spatial nodes is shown with Y*i. At each time-step, the linearized equation is integrated in space. The spatial integration is iterated and is used to update the guessed solution until it converges to the true solution Yi bounded by a small tolerance ε.

Grahic Jump Location
Fig. 3

Loading scenarios of compressing and stretching the helical rod

Grahic Jump Location
Fig. 4

Bending constitutive law that captures the relationship between the restoring moment q1 and curvature κ1. The rod chosen to be isotropic with a circular cross section. Therefore, the bending constitutive law for both planes of bending q1−κ1, and q2−κ2 are the same.

Grahic Jump Location
Fig. 5

Twisting constitutive law that captures the relationship between the restoring torque q3 and torsion κ3

Grahic Jump Location
Fig. 6

This diagram shows the relationship between the magnitude of the force along the axis of the helix faxial and the end-to-end distance ΔX

Grahic Jump Location
Fig. 7

The vibrations of the rod are calculated via three different descriptions of the constitutive law. The end-to-end distance of the rod ΔX is plotted versus time using the accurate description of the constitutive law, the least-square fitting, and the linear approximation of the constitutive law.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In