Mehrer,
H.
, 2007, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes,
Springer,
Berlin.

Kawarada,
H.
, 1974, “
On the Solutions of Initial Boundary Problem for U

_{t} = U

_{xx} + 1/(1 – u),” Publ. Res. Inst. Math. Sci.,
10(3), pp. 729–736.

[CrossRef]
Levine,
H. A.
, and
Montgomery,
J. T.
, 1980, “
The Quenching of Solutions of Some Nonlinear Parabolic Equations,” SIAM J. Math. Anal.,
11(5), pp. 842–847.

[CrossRef]
Chang,
P. H.
, and
Levine,
H. A.
, 1981, “
The Quenching of Solutions of Semilinear Hyperbolic Equations,” SIAM J. Math. Anal.,
12(6), pp. 893–903.

[CrossRef]
Podlubny,
I.
, 1999, Fractional Differential Equations,
Academic Press, New York.

Hilfer,
R.
, 2000, Applications of Fractional Calculus in Physics,
World Scientific Publishing, Singapore.

Kilbas,
A. A.
,
Srivastava,
H. M.
, and
Trujillo,
J. J.
, 2006, Theory and Applications of Fractional Differential Equations,
Elsevier, Amsterdam, The Netherlands.

Sabatier,
J.
,
Agrawal,
O. P.
, and
Machado,
J.
, 2007, Advances in Fractional Calculus,
Springer, New York.

Atanackovi,
T. M.
, 2014, ć S. Pilipović, B. Stanković, D. Zorica, Fractional Calculus With Applications in Mechanics: Vibrations and Diffusion Processes,
Wiley, New York.

Li,
C. P.
, and
Zeng,
F. H.
, 2015, Numerical Methods for Fractional Calculus,
Chapman and Hall/CRC Press, UK.

Kumar,
D.
,
Singh,
J.
, and
Baleanu,
D.
, 2018, “
A New Numerical Algorithm for Fractional Fitzhugh-Nagumo Equation Arising in Transmission of Nerve Impulses,” Nonlinear Dyn.,
91(1), pp. 307–317.

[CrossRef]
Singh,
J.
,
Kumar,
D.
,
Baleanu,
D.
, and
Rathore,
S.
, 2018, “
An Efficient Numerical Algorithm for the Fractional Drinfeld-Sokolov-Wilson Equation,” Appl. Math. Comput.,
335, pp. 12–24.

Kumar,
D.
,
Singh,
J.
, and
Baleanu,
D.
, 2018, “
Modified Kawahara Equation Within a Fractional Derivative With Non-Singular Kernel,” Therm. Sci.,
22(2), pp. 789–796.

[CrossRef]
Singh,
J.
,
Kumar,
D.
,
Qurashi,
M.
, and
Baleanu,
D.
, 2017, “
A Novel Numerical Approach for a Nonlinear Fractional Dynamical Model of Interpersonal and Romantic Relationships,” Entropy,
19(7), pp. 375–391.

[CrossRef]
Kumar,
D.
,
Singh,
J.
, and
Baleanu,
D.
, 2017, “
A New Analysis for Fractional Model of Regularized Long-Wave Equation Arising in Ion Acoustic Plasma Waves,” Math. Method Appl. Sci.,
40(15), pp. 5642–5653.

[CrossRef]
Kumar,
D.
,
Singh,
J.
,
Baleanu,
D.
, and
Sushila,
J.
, 2018, “
Analysis of Regularized Long-Wave Equation Associated With a New Fractional Operator With Mittag-Leffler Type Kernel,” Phys. A,
492, pp. 155–167.

[CrossRef]
Metzler,
R.
, and
Klafter,
J.
, 2000, “
The Random Walk's Guide to Anomalous Diffusion: A Fractional Dynamics Approach,” Phys. Rep.,
339(1), pp. 1–77.

[CrossRef]
Sun,
H. G.
,
Zhang,
Y.
,
Chen,
W.
, and
Reeves,
D. M.
, 2014, “
Use of a Variable-Index Fractional-Derivative Model to Capture Transient Dispersion in Heterogeneous Media,” J. Contam. Hydrol.,
157, pp. 47–58.

[CrossRef] [PubMed]
Sun,
H. G.
,
Liu,
X. T.
,
Zhang,
Y.
,
Pang,
G. F.
, and
Garrard,
R.
, 2017, “
A Fast Semi-Discrete Kansa Method to Solve the Two-Dimensional Spatiotemporal Fractional Diffusion Equation,” J. Comput. Phys,
345, pp. 74–90.

[CrossRef]
Zhang,
Y. N.
,
Sun,
Z. Z.
, and
Zhao,
X.
, 2012, “
Compact Alternating Direction Implicit Scheme for the Two-Dimensional Fractional Diffusion-Wave Equation,” SIAM J. Numer. Anal.,
50(3), pp. 1535–1555.

[CrossRef]
Xu,
Y.
, 2018, “
Quenching Phenomenon in a Fractional Diffusion Equation and Its Numerical Simulation,” Int. J. Comput. Math.,
95(1), pp. 98–113.

[CrossRef]
Xu,
Y.
, and
Zheng,
Z. S.
, 2017, “
Quenching Phenomenon of a Time-Fractional Diffusion Equation With Singular Source Term,” Math. Method Appl. Sci.,
40(16), pp. 5750–5759.

[CrossRef]
Zhang,
L.
,
Sun,
H. W.
, and
Pang,
H. K.
, 2015, “
Fast Numerical Solution for Fractional Diffusion Equations by Exponential Quadrature Rule,” J. Comput. Phys.,
299, pp. 130–143.

[CrossRef]
Sun,
Z. Z.
, and
Gao,
G. H.
, 2015, Finite Difference Methods of Fractional Differential Equations,
Scientific Press,
Beijing, China.

Ren,
J. C.
, and
Sun,
Z. Z.
, 2015, “
Maximum Norm Error Analysis of Difference Schemes for Fractional Diffusion Equations,” Appl. Math. Comput.,
256, pp. 299–314.

Liu,
F.
,
Zhuang,
P. H.
, and
Liu,
Q. X.
, 2015, Numerical Methods and Applications for Fractional Partial Differential Equations,
Scientific Press,
Beijing, China.

Zhao,
X.
, and
Xu,
Q. W.
, 2014, “
Efficient Numerical Schemes for Fractional Sub-Diffusion Equation With the Spatially Variable Coefficient,” Appl. Math. Model.,
38(15–16), pp. 3848–3859.

[CrossRef]
Xu,
Q. W.
, and
Hesthaven,
J. S.
, 2014, “
Discontinuous Galerkin Method for Fractional Convection-Diffusion Equations,” SIAM J. Numer. Anal.,
52(1), pp. 405–423.

[CrossRef]
Podlubny,
I.
, 2002, “
Geometrical and Physical Interpretation of Fractional Integration and Fractional Differentiation,” Fract. Calc. Appl. Anal.,
5(4), pp. 367–386.

https://arxiv.org/abs/math/0110241
Heymans,
N.
, and
Podlubny,
I.
, 2006, “
Physical Interpretation of Initial Conditions for Fractional Differential Equations With Riemann-Liouville Fractional Derivatives,” Rheol. Acta.,
45(5), pp. 765–771.

[CrossRef]
Sheng,
Q.
, and
Khaliq,
A.
, 1999, “
A Compound Adaptive Approach to Degenerate Nonlinear Quenching Problems,” Numer. Meth. PDEs,
15(1), pp. 29–47.

[CrossRef]
Sheng,
Q.
, and
Cheng,
H.
, 2000, “
An Adaptive Grid Method for Degenerate Semi-Linear Quenching Problems,” Comput. Math. Appl.,
39(9–10), pp. 57–71.

[CrossRef]
Beauregard,
M. A.
, and
Sheng,
Q.
, 2012, “
A Semi-Adaptive Compact Splitting Method for the Numerical Solution of two-Dimensional Quenching Problems,” Appl. Math. Comput.,
218(22), pp. 11240–11254.

Padgett,
J. L.
, and
Sheng,
Q.
, 2018, “
Numerical Solution of Degenerate Stochastic Kawarada Equations Via a Semi-Discretized Approach,” Appl. Math. Comput.,
325, pp. 210–226.

Dai,
Q. Y.
, and
Gu,
Y. G.
, 1997, “
A Short Note on Quenching Phenomena for Semilinear Parabolic Equations,” J. Diff. Equation,
137(2), pp. 240–250.

[CrossRef]
Henrici,
P.
, 1962, Discrete Variable Methods in Ordinary Differential Equations,
Wiley,
New York.

Bebernes,
J.
, and
Eberly,
D.
, 1989, Mathematical Problems From Combustion Theory, Applied Mathematical Sciences, Vol.
83,
Springer, New York.

Liang,
K. W.
,
Lin,
P.
, and
Tan,
R. C. E.
, 2007, “
Numerical Solution of Quenching Problems Using Mesh-Dependent Variable Temporal Steps,” Appl. Numer. Math.,
57(5–7), pp. 791–800.

[CrossRef]