Schuster,
H.
, and
Just,
W.
, 2005, Deterministic Chaos,
Wiley VCH,
Mörlenbach, Germany.

Nayfeh,
A.
, and
Balachandran,
B.
, 1995, Applied Nonlinear Dynamics,
Wiley,
New York.

Marek,
M.
, and
Schreiber,
I.
, 1995, Chaotic Behaviour of Deterministic Dissipative Systems,
Cambridge University Press,
Cambridge, UK.

Elaskar,
S.
, and
del Rio,
E.
, 2017, New Advances on Chaotic Intermittency and Its Applications,
Springer,
New York.

Kaplan,
H.
, 1992, “
Return to Type-I Intermittency,” Phys. Rev. Lett.,
68(5), pp. 553–557.

[CrossRef] [PubMed]
Price,
T.
, and
Mullin,
P.
, 1991, “
An Experimental Observation of a New Type of Intermittency,” Phys. D,
48(1), pp. 29–52.

[CrossRef]
Platt,
N.
,
Spiegel,
E.
, and
Tresser,
C.
, 1993, “
On-Off Intermittency: A Mechanism for Bursting,” Phys. Rev. Lett.,
70(3), pp. 279–282.

[CrossRef] [PubMed]
Pikovsky,
A.
,
Osipov,
G.
,
Rosenblum,
M.
, and
Zaks,
M. J. K.
, 1997, “
Attractor-Repeller Collision and Eyelet Intermittency at the Transition to Phase Synchronization,” Phys. Rev. Lett.,
79(1), pp. 47–50.

[CrossRef]
Lee,
K.
,
Kwak,
Y.
, and
Lim,
T.
, 1998, “
Phase Jumps Near a Phase Synchronization Transition in Systems of Two Coupled Chaotic Oscillators,” Phys. Rev. Lett.,
81(2), pp. 321–324.

[CrossRef]
Hramov,
A.
,
Koronovskii,
A.
,
Kurovskaya,
M.
, and
Boccaletti,
S.
, 2006, “
Ring Intermittency in Coupled Chaotic Oscillators at the Boundary of Phase Synchronization,” Phys. Rev. Lett.,
97, p. 114101.

[CrossRef] [PubMed]
Dubois,
M.
,
Rubio,
M.
, and
Berge,
P.
, 1983, “
Experimental Evidence of Intermittencies Associated With a Subharmonic Bifurcation,” Phys. Rev. Lett.,
51, p. 1446.

Malasoma,
J.
,
Werny,
P.
, and
Boiron,
M.
, 2004, “
Multichannel Type-I Intermittency in Two Models of Rayleigh-Benard Convection,” Phys. Rev. Lett.,
51(3), pp. 487–500.

Stavrinides,
S.
,
Miliou,
A.
,
Laopoulos,
T.
,
A.
, and
Anagnostopoulos,
A.
, 2008, “
The Intermittency Route to Chaos of an Electronic Digital Oscillator,” Int. J. Bifurcation Chaos,
18(5), pp. 1561–1566.

[CrossRef]
Sanmartin,
J.
,
Lopez-Rebollal,
O.
,
del Rio,
E.
, and
Elaskar,
S.
, 2004, “
Hard Transition to Chaotic Dynamics in Alfven Wave-Fronts,” Phys. Plasmas,
11(5), pp. 2026–2035.

[CrossRef]
Sanchez-Arriaga,
G.
,
Sanmartin,
J.
, and
Elaskar,
S.
, 2007, “
Damping Models in the Truncated Derivative Nonlinear Schrödinger Equation,” Phys. Plasmas,
14(8), p. 082108.

[CrossRef]
Pizza,
G.
,
Frouzakis,
G.
, and
Mantzaras,
J.
, 2012, “
Chaotic Dynamics in Premixed Hydrogen/Air Channel Flow Combustion,” Combust. Theor. Model,
16(2), pp. 275–299.

[CrossRef]
Nishiura,
Y.
,
Ueyama,
D.
, and
Yanagita,
T.
, 2005, “
Chaotic Pulses for Discrete Reaction Diffusion Systems,” SIAM J. Appl. Dyn. Syst.,
4(3), pp. 723–754.

[CrossRef]
de Anna,
P.
,
Borgne,
T. L.
,
Dentz,
M.
,
Tartakovsky,
A.
,
Bolster,
D.
, and
Davy,
P.
, 2013, “
Flow Intermittency, Dispersion and Correlated Continuous Time Random Walks in Porous Media,” Phys. Rev. Lett.,
110, p. 184502.

[CrossRef] [PubMed]
Stan,
C.
,
Cristescu,
C.
, and
Dimitriu,
D.
, 2010, “
Analysis of the Intermittency Behavior in a Low-Temperature Discharge Plasma by Recurrence Plot Quantification,” Phys. Plasmas,
17(4), p. 042115.

[CrossRef]
Chian,
A.
, 2007, Complex System Approach to Economic Dynamics (Lecture Notes in Economics and Mathematical Systems, Vol. 592), Springer, Berlin.

Zebrowski,
J.
, and
Baranowski,
R.
, 2004, “
Type-I Intermittency in Nonstationary Systems: Models and Human Heart-Rate Variability,” Phys. A,
336(1-2), pp. 74–86.

[CrossRef]
Paradisi,
P.
,
Allegrini,
P.
,
Gemignani,
A.
,
Laurino,
M.
,
Menicucci,
D.
, and
Piarulli,
A.
, 2012, “
Scaling and Intermittency of Brains Events as a Manifestation of Consciousness,” AIP Conference Proceedings,
1510(1), p. 151.

Kye,
W.
, and
Kim,
C.
, 2000, “
Characteristic Relations of Type-I Intermittency in Presence of Noise,” Phys. Rev. E,
62 (5 Pt A), pp. 6304–6307.

[CrossRef]
Kye,
W.
,
Rim,
S.
,
Kim,
C.
,
Lee,
J.
,
Ryu,
J.
,
Yeom,
B.
, and
Park,
Y.
, 2003, “
Experimental Observation of Characteristic Relations of Type-III Intermittency in the Presence of Noise in a Simple Electronic Circuit,” Phys. Rev. E,
68(3) p. 036203.

del Rio,
E.
, and
Elaskar,
S.
, 2010, “
New Characteristic Relation in Type-II Intermittency,” Int. J. Bifurcation Chaos,
20(4), pp. 1185–1191.

[CrossRef]
Elaskar,
S.
,
del Rio,
E.
, and
Donoso,
J.
, 2011, “
Reinjection Probability Density in Type-III Intermittency,” Phys. A,
390(15), pp. 2759–2768.

[CrossRef]
del Rio,
E.
,
Sanjuan,
M.
, and
Elaskar,
S.
, 2012, “
Effect of Noise on the Reinjection Probability Density in Intermittency,” Commun. Nonlinear Sci. Numer. Simul.,
17(9), pp. 3587–3596.

[CrossRef]
Elaskar,
S.
, and
del Rio,
E.
, 2012, “
Intermittency Reinjection Probability Function With and Without Noise Effects,” Latest Trends in Circuits, Automatics Control and Signal Processing, WSEAS, Barcelona, Spain, pp. 145–154.

del Rio,
E.
,
Elaskar,
S.
, and
Makarov,
V.
, 2013, “
Theory of Intermittency Applied to Classical Pathological Cases,” Chaos,
23(3), p. 033112.

[CrossRef] [PubMed]
del Rio,
E.
,
Elaskar,
S.
, and
Donoso,
J.
, 2014, “
Laminar Length and Characteristic Relation in Type-I Intermittency,” Commun. Nonlinear Sci. Numer. Simul.,
19(4), pp. 967–976.

[CrossRef]
Krause,
G.
,
Elaskar,
S.
, and
del Rio,
E.
, 2014, “
Type-I Intermittency With Discontinuous Reinjection Probability Density in a Truncation Model of the Derivative Nonlinear Schrödinger Equation,” Nonlinear Dyn.,
77(3), pp. 455–466.

[CrossRef]
Krause,
G.
,
Elaskar,
S.
, and
del Rio,
E.
, 2014, “
Noise Effect on Statistical Properties of Type-I Intermittency,” Phys. A,
402, pp. 318–329.

[CrossRef]
Elaskar,
S.
,
del Rio,
E.
,
Krause,
G.
, and
Costa,
A.
, 2015, “
Effect of the Lower Boundary of Reinjection and Noise in Type-II Intermittency,” Nonlinear Dyn.,
79(2), pp. 1411–1424.

[CrossRef]
del Rio,
E.
, and
Elaskar,
S.
, 2016, “
On the Intermittency Theory in 1D Maps,” Int. J. Bifurcation Chaos,
26(14), p. 1620228.

[CrossRef]
Elaskar,
S.
,
del Rio,
E.
, and
Costa,
A.
, 2017, “
Reinjection Probability Density for Type-III Intermittency With Noise and Lower Boundary of Reinjection,” ASME J. Comput. Nonlinear Dyn.,
12(3), p. 031020.

[CrossRef]
Elaskar,
S.
,
del Rio,
E.
, and
Marcantoni,
L. G.
, 2018, “
Nonuniform Reinjection Probability Density Function in Type V Intermittency,” Nonlinear Dyn.,
92, pp. 683–697.

[CrossRef]
Bauer,
M.
,
Habip,
S.
,
He,
D.
, and
Martiessen,
W.
, 1992, “
New Type of Intermittency in Discontinuous Maps,” Phys. Rev. Lett.,
68(11), pp. 1625–1628.

[CrossRef] [PubMed]
He,
D.
,
Bauer,
M.
,
Habip,
S.
,
Kruger,
U.
,
Martiessen,
W.
,
Christiansen,
B.
, and
Wang,
B.
, 1992, “
New Type of Intermittency in Discontinuous Maps,” Phys. Lett. A,
171(1–2), pp. 61–65.

[CrossRef]
Fan,
J.
,
Ji,
F.
,
Guan,
S.
,
Wang,
B.
, and
He,
D.
, 1993, “
Type V Intermittency,” Phys. Lett. A,
182(2–3), pp. 232–237.

[CrossRef]
Wu,
S.
, and
He,
D.
, 2001, “
Characteristics of Period-Doubling Bifurcation Cascades in Quasidiscontinuous Systems,” Commun. Theor. Phys.,
35(3), pp. 275–282.

Wang,
D.
,
Mo,
J.
,
Zhao,
X.
,
Gu,
H.
,
Qu,
S.
, and
Ren,
W.
, 2011, “
Intermittent Chaotic Neural Firing Characterized by Non-Smooth like Features,” Chin. Phys. Lett.,
27(7), p. 070503.

Gu,
H.
, and
Xiao,
W.
, 2014, “
Difference Between Intermittent Chaotic Bursting and Spiking of Neural Firing Patterns,” Int. J. Bifurcation Chaos,
24(6), p. 1450082.

[CrossRef]
Bai-lin,
H.
, 1989, Elementary Symbolic Dynamics Chaos Dissipative Systems,
World Scientific,
Singapore.