Lanczos, C.
, 1952, The Variational Principles of Mechanics, University of Toronto Press, Toronto, ON, Canada.

Pars, L. A.
, 1965, A Treatise on Analytical Dynamics, Heinemann Educational Books, London.

Rosenberg, R. M.
, 1977, Analytical Dynamics of Discrete Systems, Plenum Press, New York.

Greenwood, D. T.
, 1988, Principles of Dynamics, Prentice Hall, Englewood Cliffs, NJ.

Udwadia, F. E.
, and
Kalaba, R. E.
, 1996, Analytical Dynamics a New Approach, Cambridge University Press, Cambridge, UK.

Bloch, A. M.
, 2003, Nonholonomic Mechanics and Control, Springer-Verlag, New York.

Routh, E. J.
, 1897, Dynamics of a System of Rigid Bodies, 6th ed., Macmillan, London.

Stronge, W. J.
, 2000, Impact Mechanics, Cambridge University Press, Cambridge, UK.

Pfeiffer, F.
, and
Glocker, C.
, 1996, Multibody Dynamics With Unilateral Contacts, Wiley, New York.

Brogliato, B.
, 2016, Νonsmooth Mechanics: Models, Dynamics and Control, 3rd ed., Springer-Verlag, London.

Khulief, Y. A.
, 2013, “Modeling of Impact in Multibody Systems: An Overview,” ASME J. Comput. Nonlinear Dyn., 8(2), p. 021012.

[CrossRef]
Marques, F.
,
Flores, P.
,
Claro, J. C. P.
, and
Lankarani, H. M.
, 2016, “A Survey and Comparison of Several Friction Force Models for Dynamic Analysis of Multibody Mechanical Systems,” Nonlinear Dyn., 86(3), pp. 1407–1443.

[CrossRef]
Hartog, J. P. D.
, and
Mikina, S. J.
, 1932, “Forced Vibrations With Non-Linear Spring Constants,” ASME J. Appl. Mech., 58, pp. 157–164.

Masri, S. F.
, and
Caughey, T. K.
, 1966, “On the Stability of the Impact Damper,” ASME J. Appl. Mech., 33(3), pp. 586–592.

[CrossRef]
Shaw, S. W.
, and
Holmes, P. J.
, 1983, “A Periodically Forced Piecewise Linear Oscillator,” J. Sound Vib., 90(1), pp. 129–155.

[CrossRef]
Natsiavas, S.
, 1989, “Periodic Response and Stability of Oscillators With Symmetric Trilinear Restoring Force,” J. Sound Vib., 134(2), pp. 315–331.

[CrossRef]
Babitsky, V. I.
, 1998, Theory of Vibro-Impact Systems and Applications, Springer-Verlag, Berlin.

Moreau, J. J.
, and
Panagiotopoulos, P. D.
, eds., 1988, Nonsmooth Mechanics and Applications, CISM Courses and Lectures, Vol. 302, Springer-Verlag, Vienna, Austria.

Glocker, C.
, 2001, Set-Valued Force Laws, Dynamics of Non-Smooth Systems, Springer, Berlin.

Leine, R. I.
, and
Nijmeijer, H.
, 2013, Dynamics and Bifurcations of Non-Smooth Mechanical Systems, Springer-Verlag, Berlin.

Keller, J. B.
, 1986, “Impact With Friction,” ASME J. Appl. Mech., 53(1), pp. 1–4.

[CrossRef]
Batlle, J. A.
, and
Condomines, A. B.
, 1991, “Rough Collisions in Multibody Systems,” Mech. Mach. Theory, 26, pp. 565–577.

[CrossRef]
Stronge, W. J.
, 2001, “Generalized Impulse and Momentum Applied to Multibody Impact With Friction,” Mech. Struct. Mach., 29(2), pp. 239–260.

[CrossRef]
Zhao, Z.
, and
Liu, C.
, 2007, “The Analysis and Simulation for Three-Dimensional Impact With Friction,” Multibody Syst. Dyn., 18(4), pp. 511–530.

[CrossRef]
Elkaranshawy, H. A.
,
Abdelrazek, A. M.
, and
Ezzat, H. M.
, 2017, “Tangential Velocity During Impact With Friction in Three-Dimensional Rigid Multibody Systems,” Nonlinear Dyn., 90(2), pp. 1443–1459.

[CrossRef]
Aghili, F.
, 2011, “Control of Redundant Mechanical Systems Under Equality and Inequality Constraints on Both Input and Constraint Forces,” ASME J. Comput. Nonlinear Dyn., 6(3), p. 031013.

[CrossRef]
Brogliato, B.
, 2014, “Kinetic Quasi-Velocities in Unilaterally Constrained Lagrangian Mechanics With Impacts and Friction,” Multibody Syst. Dyn., 32(2), pp. 175–216.

[CrossRef]
Paraskevopoulos, E.
, and
Natsiavas, S.
, 2013, “On Application of Newton's Law to Mechanical Systems With Motion Constraints,” Nonlinear Dyn., 72(1–2), pp. 455–475.

[CrossRef]
Natsiavas, S.
, and
Paraskevopoulos, E.
, 2015, “A Set of Ordinary Differential Equations of Motion for Constrained Mechanical Systems,” Nonlinear Dyn., 79(3), pp. 1911–1938.

[CrossRef]
Paraskevopoulos, E.
, and
Natsiavas, S.
, 2017, “A Geometric Solution to the General Single Contact Frictionless Problem by Combining Concepts of Analytical Dynamics and b-Calculus,” Int. J. Non-Linear Mech., 95, pp. 117–131.

[CrossRef]
Natsiavas, S.
, and
Paraskevopoulos, E.
, 2018, “An Analytical Dynamics Approach for Mechanical Systems Involving a Single Frictional Contact Using b-Geometry,” Int. J. Solids Struct., 148–149, pp. 140–156.

[CrossRef]
Papastavridis, J. G.
, 1999, Tensor Calculus and Analytical Dynamics, CRC Press, Boca Raton, FL.

Frankel, T.
, 1997, The Geometry of Physics: An Introduction, Cambridge University Press, New York.

Tu, L. W.
, 2011, An Introduction to Manifolds, 2nd ed., Springer Science+ Business Media, New York.

Melrose, R. B.
, 1993, The Atiyah-Patodi-Singer Index Theorem, Research Notes in Mathematics, Vol. 4, A K Peters, Wellesley, MA.

Geradin, M.
, and
Cardona, A.
, 2001, Flexible Multibody Dynamics: A Finite Element Approach, Wiley, New York.

Bauchau, O. A.
, 2011, Flexible Multibody Dynamics, Springer Science+ Business Media, London.

Kevorkian, J.
, and
Cole, J. D.
, 1985, Perturbation Methods in Applied Mathematics, 2nd ed., Springer-Verlag, New York.

Cousteix, J.
, and
Mauss, J.
, 2007, Asymptotic Analysis and Boundary Layers, Springer-Verlag, Berlin.

Kozlov, V. V.
, and
Treshchev, D. V.
, 1991, Billiards: A Genetic Introduction to the Dynamics of Systems With Impacts (Translations of Mathematical Monographs, Vol. 89), American Mathematical Society, Providence, RI.

Zahariev, E.
, 2003, “Multibody System Contact Dynamics Simulation,” Virtual Nonlinear Multibody Systems (NATO Science Series, Vol. 103),
W. Schiehlen
and
M. Valasek
, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 383–402.

Νeimark, J. I.
, and
Fufaev, N. A.
, 1972, “Dynamics of Nonholonomic Systems,” Translations of Mathematical Monographs, Vol. 33, American Mathematical Society, Providence, RI.

Papalukopoulos, C.
, and
Natsiavas, S.
, 2007, “Dynamics of Large Scale Mechanical Models Using Multi-Level Substructuring,” ASME J. Comput. Nonlinear Dyn., 2(1), pp. 40–51.

[CrossRef]
Theodosiou, C.
, and
Natsiavas, S.
, 2009, “Dynamics of Finite Element Structural Models With Multiple Unilateral Constraints,” Int. J. Non-Linear Mech., 44(4), pp. 371–382.

[CrossRef]
Gonçalves, A. A.
,
Bernardino, A.
,
Jorge, J.
, and
Lopes, D. S.
, 2017, “A Benchmark Study on Accuracy-Controlled Distance Calculation Between Superellipsoid and Superovoid Contact Geometries,” Mech. Mach. Theory, 115, pp. 77–96.

[CrossRef]
Pournaras, A.
,
Karaoulanis, F.
, and
Natsiavas, S.
, 2017, “Dynamics of Mechanical Systems Involving Impact and Friction Using a New Contact Detection Algorithm,” Int. J. Non-Linear Mech., 94, pp. 309–322.

[CrossRef]
Stoianovici, D.
, and
Hurmuzlu, Y.
, 1996, “A Critical Study of the Applicability of Rigid-Body Collisions Theory,” ASME J. Appl. Mech., 63(2), pp. 307–316.

[CrossRef]
Nguyen, N. S.
, and
Brogliato, B.
, 2014, Multiple Impacts in Dissipative Granular Chains (Lecture Notes in Applied and Computational Mechanics, Vol. 72), Springer, Berlin.

Melrose, R. B.
, 1996, “Differential Analysis on Manifolds With Corners,” accessed Oct. 30, 2018,

http://math.mit.edu/~rbm
Joyce, D.
, 2016, “A Generalization of Manifolds With Corners,” Adv. Math., 299, pp. 760–862.

[CrossRef]
Acary, V.
, and
Brogliato, B.
, 2008, Numerical Methods for Nonsmooth Dynamical Systems (Lecture Notes in Applied and Computational Mechanics, Vol. 35), Springer, Berlin.

Brüls, O.
,
Acary, V.
, and
Cardona, A.
, 2014, “Simultaneous Enforcement of Constraints at Position and Velocity Levels in the Nonsmooth Generalized-α Scheme,” Comput. Methods Appl. Eng., 281, pp. 131–161.

[CrossRef]