Research Papers

Amplitude Death Induced by Intrinsic Noise in a System of Three Coupled Stochastic Brusselators

[+] Author and Article Information
O. Díaz-Hernández

Facultad de Ciencias en Física y Matemáticas,
Universidad Autónoma de Chiapas,
Tuxtla Gutiérrez, Chiapas 29050, México
e-mail: orlando.diaz@unach.mx

Elizeth Ramírez-Álvarez

Facultad de Ciencias en Física y Matemáticas,
Universidad Autónoma de Chiapas,
Tuxtla Gutiérrez, Chiapas 29050, México
e-mail: eramirez@unach.mx

A. Flores-Rosas

Facultad de Ciencias en Física y Matemáticas,
Universidad Autónoma de Chiapas,
Tuxtla Gutiérrez, Chiapas 29050, México
e-mail: aros8151@gmail.com

C. I. Enriquez-Flores

Conacyt-Facultad de Ciencias en Física y
Universidad Autónoma de Chiapas,
Tuxtla Gutiérrez, Chiapas 29050, México
e-mail: chrienri@yahoo.com.mx

M. Santillán

Centro de Investigación y de Estudios Avanzados
del Instituto Politécnico Nacional,
Monterrey, Nuevo León 66600, México
e-mail: msantillan@cinvestav.mx

Pablo Padilla-Longoria

Instituto de Investigaciones en Matemáticas
Aplicadas y en Sistemas,
Universidad Nacional Autónoma de México,
Mexico City 04510, México
e-mail: pablo@mym.iimas.unam.mx

Gerardo J. Escalera Santos

Facultad de Ciencias en Física y Matemáticas,
Universidad Autónoma de Chiapas,
Tuxtla Gutiérrez, Chiapas 29050, México
e-mail: gescalera.santos@gmail.com

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received May 11, 2018; final manuscript received December 11, 2018; published online February 15, 2019. Assoc. Editor: Bogdan I. Epureanu.

J. Comput. Nonlinear Dynam 14(4), 041004 (Feb 15, 2019) (7 pages) Paper No: CND-18-1212; doi: 10.1115/1.4042322 History: Received May 11, 2018; Revised December 11, 2018

In this work, we study the interplay between intrinsic biochemical noise and the diffusive coupling, in an array of three stochastic Brusselators that present a limit-cycle dynamics. The stochastic dynamics is simulated by means of the Gillespie algorithm. The intensity of the intrinsic biochemical noise is regulated by changing the value of the system volume (Ω), while keeping constant the chemical species' concentration. To characterize the system behavior, we measure the average spike amplitude (ASA), the order parameter R, the average interspike interval (ISI), and the coefficient of variation (CV) for the interspike interval. By analyzing how these measures depend on Ω and the coupling strength, we observe that when the coupling parameter is different from zero, increasing the level of intrinsic noise beyond a given threshold suddenly drives the spike amplitude, SA, to zero and makes ISI increase exponentially. These results provide numerical evidence that amplitude death (AD) takes place via a homoclinic bifurcation.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Lara-Aparicio, M. , Barriga-Montoya, C. , Padilla-Longoria, P. , and Fuentes-Pardo, B. , 2014, “Modeling Some Properties of Circadian Rhythms,” Math. Biosci. Eng., 11(2), pp. 317–330. [PubMed]
Kopell, N. , Ermentrout, G. B. , Whittington, M. A. , and Traub, R. D. , 2000, “Gamma Rhythms and Beta Rhythms Have Different Synchronization Properties,” PNAS, 97(4), pp. 1867–1872. [CrossRef] [PubMed]
Whittington, M. A. , Traub, R. D. , and Jefferys, J. G. R. , 1995, “Synchronized Oscillations in Interneuron Networks Driven by Metabotropic Glutamate Receptor Activation,” Nature, 373(6515), pp. 612–615. [CrossRef] [PubMed]
Mirollo, R. E. , and Strogatz, S. H. , 1990, “Synchronization of Pulse-Coupled Biological Oscillators,” SIAM J. Appl. Math., 50(6), pp. 1645–1662. [CrossRef]
Shiino, M. , and Frankowics, M. , 1989, “Synchronization of Infinitely Many Coupled Limit-Cycle Type Oscillators,” Phys. Lett. A, 136(3), pp. 103–108. [CrossRef]
Ermentrout, G. B. , 1985, “Synchronization in a Pool of Mutually Coupled Oscillators With Random Frequencies,” J. Math. Biol., 22, pp. 1–9. [CrossRef]
Yamaguchi, Y. , and Shimizu, H. , 1984, “Theory of Self-Synchronization in the Presence of Native Frequency Distribution and External Noises,” Phys. D, 11(1–2), pp. 212–226. [CrossRef]
Tanu Singla, N. P. , and Parmananda, P. , 2011, “Exploring the Dynamics of Conjugate Coupled Chua Circuits: Simulations and Experiments,” Phys. Rev. E, 83(2 Pt. 2), p. 026210. [CrossRef]
Ramana Dodla, A. S. , and Johnston, G. L. , 2006, “Phase-Locked Patterns and Amplitude Death in a Ring of Delay-Coupled Limit Cycle Oscillators,” Phys. Rev. E, 69(5 Pt. 2), p. 056217.
Strogatz, S. H. , Marcus, C. M. , Westervelt, R. M. , and Mirollo, R. E. , 1989, “Collective Dynamics of Coupled Oscillators With Random Pinning,” Phys. D, 36(1–2), pp. 23–50. [CrossRef]
Strogatz, S. H. , and Mirollo, R. E. , 1988, “Phase-Locking and Critical Phenomena in Lattices of Coupled Nonlinear Oscillators With Random Intrinsic Frequencies,” Phys. D, 31(2), pp. 143–168. [CrossRef]
Ryu, J.-W. , Kim, J.-H. , Son, W.-S. , and Hwang, D.-U. , 2017, “Amplitude Death in a Ring of Nonidentical Nonlinear Oscillators With Unidirectional Coupling,” Chaos, 27, p. 083119. [CrossRef] [PubMed]
Banerjee, T. , and Ghosh, D. , 2014, “Transition From Amplitude to Oscillation Death Under Mean-Field Diffusive Coupling,” Phys. Rev. E, 89, p. 052912. [CrossRef]
Sharma, A. , and Shrimali, M. D. , 2012, “Amplitude Death With Mean-Field Diffusion,” Phys. Rev. E, 85(5 Pt. 2), p. 057204. [CrossRef]
Garima Saxena, A. P. , and Ramaswany, R. , 2012, “Amplitude Death: The Emergence of Stationary in Coupled Nonlinear Systems,” Phys. Rep., 521(5), pp. 205–228. [CrossRef]
Du, W. G. L. , and Mei, D. , 2012, “Coherence and Spike Death Induced by Bounded Noise and Delayed Feedback in an Excitable System,” Eur. Phys. J. B, 85(182), pp. 1–7.
Sheng-Jun, W. , Xin-Jian, X. , Zhi-Xi, W. , Zi-Gang, H. , and Ying-Hai, W. , 2008, “Influence of Synaptic Interaction on Firing Synchronization and Spike Death in Excitatory Neuronal Networks,” Phys. Rev. E, 78(6 Pt. 1), p. 061906.
Konishi, K. , 2004, “Amplitude Death in Oscillators Coupled by a One-Way Ring Time-Delay Connection,” Phys. Rev. E, 70(6 Pt. 2), p. 066201. [CrossRef]
Pisarchik, A. N. , 2003, “Oscillation Death in Coupled Nonautonomous Systems With Parametrical Modulation,” Phys. Lett. A, 318(1–2), pp. 65–70. [CrossRef]
Aronson, D. G. , Ermentrout, G. B. , and Kopell, N. , 1990, “Amplitude Response of Coupled Oscillators,” Phys. D, 41(3), pp. 403–449. [CrossRef]
Mirollo, R. E. , and Strogatz, S. H. , 1990, “Amplitude Death in an Array of Limit-Cycle Oscillators,” J. Stat. Phys., 60(1–2), pp. 245–262. [CrossRef]
Matthews, P. C. , and Strogatz, S. H. , 1990, “Phase Diagram for the Collective Behavior of Limit-Cycle Oscillators,” Phys. Rev. Lett., 65(14), pp. 1701–1704. [CrossRef] [PubMed]
Ermentrout, G. B. , 1990, “Oscillator Death in Populations of ‘All to All’ Coupled Nonlinear Oscillator,” Phys. D, 41(2), pp. 219–231. [CrossRef]
Koseska, A. , Volkov, E. , and Kurths, J. K. , 2013, “Oscillation Quenching Mechanisms: Amplitude vs. Oscillation Death,” Phys. Rep., 531(4), pp. 173–199. [CrossRef]
Matjaz Perc, M. G. , and Marhl, M. , 2007, “Periodic Calcium Waves in Coupled Cells Induced by Internal Noise,” Chem. Phys. Lett., 437(1–3), pp. 143–147. [CrossRef]
To, T.-L. , Henson, M. A. , Herzog, E. D , and Doyle , F. J., III , 2007, “A Molecular Model for Intercellular Synchronization in the Mammalian Circadian Clock,” Biophys. J., 92(11), pp. 3792–3803. [CrossRef] [PubMed]
Jordi García-Ojalvo, M. B. E. , and Strogatz, S. H. , 2004, “Modeling a Synthetic Multicellular Clock: Repressilators Coupled by Quorum Sensing,” PNAS, 101(30), pp. 10955–10960. [CrossRef] [PubMed]
Gracheva, M. E. , and Gunton, J. D. , 2003, “Intercellular Communication Via Intracellular Calcium Oscillations,” J. Theor. Biol., 221(4), pp. 513–518. [CrossRef] [PubMed]
Gracheva, M. E. , Toral, R. , and Gunton, J. D. , 2001, “Stochastic Effects in Intercellular Calcium Spiking in Hepatocytes,” J. Theor. Biol., 212(1), pp. 111–125. [CrossRef] [PubMed]
Glass, L. , 2001, “Synchronization and Rhythmic Processes in Physiology,” Nature, 410(6825), pp. 277–284. [CrossRef] [PubMed]
Feudel, U. , Neiman, A. , Braun, H. , Huber, M. , and Moss, F. , 2000, “Homoclinic Bifurcation in a Hodgkin-Huxley Model of Thermally Sensitive Neurons,” Chaos, 10(1), pp. 231–239. [CrossRef] [PubMed]
Elowitz, M. B. , and Leibler, S. , 2000, “A Synthetic Oscillatory Network of Transcriptional Regulators,” Nature, 403(6767), pp. 335–338. [CrossRef] [PubMed]
Wei Wang, G. P. , and Cerdeira, H. A. , 1993, “Dynamical Behavior of the Firings in a Coupled Neuronal System,” Phys. Rev. E, 47(4), pp. 2893–2898. [CrossRef]
Dongmei Zhang, L. G. , and Peltier, W. R. , 1993, “Deterministic Chaos in the Belousov-Zhabotinsky Reaction: Experiments and Simulations,” Chaos, 3(4), pp. 723–745. [CrossRef] [PubMed]
Crowley, M. F. , and Epstein, I. R. , 1989, “Experimental and Theoretical Studies of a Coupled Chemical Oscillator: Phase Multistability, and In-Phase and Out-of-Phase Entrainment,” J. Phys. Chem., 93(6), pp. 2496–2502. [CrossRef]
Sherman, J. R. A. , and Keizer, J. , 1988, “Emergence of Organized Bursting in Clusters of Pancreatic A-Cells by Channel Sharing,” Biophys. J., 54(3), pp. 411–425. [CrossRef] [PubMed]
Winfree, A. T. , 1967, “Biological Rhythms and the Behavior of Populations of Coupled Oscillators,” J. Theoret. Biol., 16(1), pp. 15–42. [CrossRef]
Hou, Z. , and Xin, H. , 2003, “Oscillator Death on Small-World Networks,” Phys. Rev. E, 68(5 Pt. 2), p. 055103. [CrossRef]
Kuramoto, Y. , 1991, “Collective Synchronization of Pulse-Coupled Oscillators and Excitable Units,” Phys. D, 50(1), pp. 15–30. [CrossRef]
Bar-Eli, K. , 1985, “On the Stability of Coupled Chemical Oscillators,” Phys. D, 14(2), pp. 242–252. [CrossRef]
Murray, J. D. , 1974, “On a Model for the Temporal Oscillations in the Belousov-Zhabotinsky Reaction,” J. Chem. Phys., 61(9), pp. 3610–3613. [CrossRef]
Dey Supravat, D. D. , and Parmananda, P. , 2011, “Intrinsic Noise Induced Resonance in Presence of Sub-Threshold Signal in Brusselator,” Chaos, 21(3), p. 033124. [CrossRef] [PubMed]
Ly, C. , and Ermentrout, G. B. , 2010, “Coupling Regularizes Individual Units in Noisy Populations,” Phys. Rev. E, 81(1 Pt 1), p. 011911. [CrossRef]
Nandi, A. , and Lindner, B. , 2010, “Intrinsic Common Noise in a System of Two Coupled Brusselators,” Chem. Phys., 375(2–3), pp. 348–358. [CrossRef]
Makarov, V. A. , Nekorkin, V. I. , and Velarde, M. G. , 2001, “Spiking Behavior in a Noise-Driven System Combining Oscillatory and Excitatory Properties,” Phys. Rev. Lett., 86(15), pp. 3431–3434. [CrossRef] [PubMed]
Pikovsky, A. S. , and Kurths, J. , 1997, “Coherence Resonance in a Noise-Driven Excitable System,” Phys. Rev. Lett., 78(5), pp. 775–778. [CrossRef]
Hairer, E. , Norsett, S. P. , and Wanner, G. , 1993, Solving Ordinary Differential Equations I, Springer, Berlin.
René Lefever, G. N. , and Borckmans, P. , 1988, “The Brusselator: It Does Oscillate All the Same,” J. Chem. Soc., Faraday Trans. 1, 84(4), pp. 1013–1023. [CrossRef]
Gillespie, D. T. , 1976, “A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions,” J. Comput. Phys., 22(4), pp. 403–434. [CrossRef]
Gillespie, D. T. , 1977, “Exact Stochastic Simulation of Coupled Chemical Reactions,” J. Phys. Chem., 81(25), pp. 2340–2361. [CrossRef]
Strogatz, S. H. , 2014, Nonlinear Dynamics and Chaos With Applications to Physics, Biology, Chemistry and Engineering, 2nd ed., Westview Press, Philadelphia, PA.
Orlik, M. , 2012, Self-Organization in Electrochemical Systems I: General Principles of Self-Organization. Temporal Instabilities, Springer Science & Business Media, Berlin.
Gray, P. , Nicolis, G. , Baras, F. , and Scott, S. K. , 1990, Spatial Inhomogeneities and Transient Behaviour in Chemical Kinetics, Manchester University Press, Manchester, UK.
Gonze, D. , Bernard, S. , Waltermann, C. , Kramer, A. , and Herzel, H. , 2005, “Spontaneous Synchronization of Coupled Circadian Oscillators,” Biophys. J., 89(1), pp. 120–129. [CrossRef] [PubMed]
Volkov, E. I. , and Stolyarov, M. , 1994, “Temporal Variability in a System of Coupled Mitotic Timers,” Biol. Cybern., 71(5), pp. 451–459. [CrossRef] [PubMed]
Nini, A. , Feingold, A. , Slovin, H. , and Bergman, H. , 1995, “Neurons in the Globus Pallidus Do Not Show Correlated Activity in the Normal Monkey, But Phase-Locked Oscillations Appear in the MPTP Model of Parkinsonism,” J. Neurophysiol., 74(4), pp. 1800–1805. [CrossRef] [PubMed]
Hammond, C. , Bergman, H. , and Brown, P. , 2007, “Pathological Synchronization in Parkinson's Disease: Networks, Models and Treatments,” Trends Neurosci., 30(7), pp. 357–364. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Plot of CV versus Ω, for three different K values and no-coupling, indicated inside this figure with different colors

Grahic Jump Location
Fig. 2

Time series of three uncoupled Brusselators. Plots of X versus time for three different oscillators (each color corresponds to one oscillator) with no coupling K =0 and various Ω values, the color mapping is indistinct for each oscillator. (a) Ω=0.3 V, (b) Ω=0.18 V, and (c) Ω=0.076 V.

Grahic Jump Location
Fig. 3

Time series of three coupled Brusselators. Plots of X versus time for three different oscillators (each color corresponds to one oscillator) in which K=4.0×10−2 T−1. We present simulations for various Ω values. (a) Ω=0.3 V, (b) Ω=0.18 V, and (c) Ω=0.076 V.

Grahic Jump Location
Fig. 4

Average spike amplitude for different intrinsic noise intensity and different coupling values. Plots of average spike amplitude versus Ω for different coupling values. The results corresponding to K =0 (i.e., no coupling) are represented with black-filled circles, while the results corresponding to K≠0 are represented with color-filled circles, the color code is indicate inside the figure.

Grahic Jump Location
Fig. 5

Average ISI for different intrinsic noise intensity and three coupling values. Plots of average interspike interval versus Ω, for three different values of K indicated inside this figure with different colors.

Grahic Jump Location
Fig. 6

(a) Average spike amplitude (filled circles) and ISI (empty circle) of stochastic spiking in the X variable as a function of the intrinsic noise Ω. The exponential increase in period and relatively constant amplitude of oscillation indicates a homoclinic bifurcation. In (b), the ln(Ω−ΩH) versus ISI curve can be fitted by a straight line indicating an underlying homoclinic bifurcation. The values of the ISI and the ASA are determined as the average over all stochastic oscillator.

Grahic Jump Location
Fig. 7

Plots of the order parameter for different intrinsic noise intensity and two coupling values. The results corresponding to K =0 (i.e., no coupling) are represented with empty circles, while the results corresponding to K=0.01 are represented with black-filled triangles.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In