Technical Brief

Output Feedback Fractional Integral Sliding Mode Control of Robotic Manipulators

[+] Author and Article Information
Aldo Jonathan Muñoz-Vázquez

CONACYT Research Fellow
School of Engineering,
Autonomous University of Chihuahua,
Chihuahua, Chihuahua 31125, Mexico
e-mail: ajmunoz@uach.mx

Fernando Martínez-Reyes

School of Engineering,
Autonomous University of Chihuahua,
Chihuahua, Chihuahua 31125, Mexico
e-mail: fmartine@uach.mx

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received August 20, 2018; final manuscript received February 24, 2019; published online March 14, 2019. Assoc. Editor: Bernard Brogliato.

J. Comput. Nonlinear Dynam 14(5), 054502 (Mar 14, 2019) (5 pages) Paper No: CND-18-1372; doi: 10.1115/1.4043000 History: Received August 20, 2018; Revised February 24, 2019

The dynamic model of a robotic system is prone to parametric and structural uncertainties, as well as dynamic disturbances, such as dissipative forces, input noise and vibrations, to name a few. In addition, it is conventional to access only a part of the state, such that, when just the joint positions are available, the use of an observer, or a differentiator, is required. Besides, it has been demonstrated that some disturbances are not necessarily differentiable in any integer-order sense, requiring for a physically realizable but robust controller to face them. In order to enforce a stable tracking in the case of nondifferentiable disturbances, and accessing just to the robot configuration, an output feedback controller is proposed, which is continuous and induces the convergence of the system state into a stable integral error manifold, by means of a fractional-order reaching dynamics. Simulation and experimental studies are conducted to show the reliability of the proposed scheme.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Spong, M. W. , and Vidyasagar, M. , 1989, Robot Dynamics and Control, Wiley, New York.
An, C. H. , Atkeson, C. G. , Griffiths, J. D. , and Hollerbach, J. M. , 1989, “ Experimental Evaluation of Feedforward and Computed Torque Control,” IEEE Trans. Rob. Autom., 5(3), pp. 368–373. [CrossRef]
Middletone, R. H. , and Goodwin, G. C. , 1986, “ Adaptive Computed Torque Control for Rigid Link Manipulators,” IEEE Conference on Decision and Control (CDC), Athens, Greece, Dec. 10–12, pp. 68–73.
Parra-Vega, V. , and Arimoto, S. , 1996, “ A Passivity-Based Adaptive Sliding Mode Position-Force Control for Robot Manipulators,” Int. J. Adapt. Control Signal Process., 10(4–5), pp. 365–377. [CrossRef]
Parra-Vega, V. , Rodríguez-Angeles, A. , Arimoto, S. , and Hirzinger, G. , 2001, “ High Precision Constrained Grasping With Cooperative Adaptive Handcontrol,” J. Intell. Rob. Syst., 32(3), pp. 235–254. [CrossRef]
Liu, Y. H. , Arimoto, S. , Parra-Vega, V. , and Kitagaki, K. , 1997, “ Decentralized Adaptive Control of Multiple Manipulators in Co-Operations,” Int. J. Control, 67(5), pp. 649–674. [CrossRef]
Parra-Vega, V. , and Arimoto, S. , 1995, “ An Exponentially Convergent Adaptive Sliding Mode Control of Robot Manipulators,” Int. J. Syst. Sci., 26(12), pp. 2263–2276. [CrossRef]
Song, Z. , Yi, J. , Zhao, D. , and Li, X. , 2005, “ A Computed Torque Controller for Uncertain Robotic Manipulator Systems: Fuzzy Approach,” Fuzzy Sets Syst., 154(2), pp. 208–226. [CrossRef]
Utkin, V. I. , and Chang, H. C. , 2002, “ Sliding Mode Control on Electro-Mechanical Systems,” Math. Probl. Eng., 8(4–5), pp. 451–473. [CrossRef]
Parra-Vega, V. , Arimoto, S. , Liu, Y. H. , Hirzinger, G. , and Akella, P. , 2003, “ Dynamic Sliding PID Control for Tracking of Robot Manipulators: Theory and Experiments,” IEEE Trans. Rob. Autom., 19(6), pp. 967–976. [CrossRef]
Vázquez, C. , Collado, J. , and Fridman, L. , 2014, “ Super Twisting Control of a Parametrically Excited Overhead Crane,” J. Franklin Inst., 351(4), pp. 2283–2298. [CrossRef]
Alaviyan-Shahri, E. S. , Alfi, A. , and Tenreiro-Machado, J. A. , 2016, “ Stabilization of Fractional-Order Systems Subject to Saturation Element Using Fractional Dynamic Output Feedback Sliding Mode Control,” ASME J. Comput. Nonlinear Dyn., 12(3), p. 031014. [CrossRef]
Khamsuwan, P. , and Kuntanapreeda, S. , 2016, “ A Linear Matrix Inequality Approach to Output Feedback Control of Fractional-Order Unified Chaotic Systems With One Control Input,” ASME J. Comput. Nonlinear Dyn., 11(5), p. 051021. [CrossRef]
Tavazoei, M. S. , 2011, “ Maximal Bound for Output Feedback Gain in Stabilization of Fixed Points of Fractional-Order Chaotic Systems,” ASME J. Comput. Nonlinear Dyn., 6(3), p. 031012. [CrossRef]
Azarang, A. , Miri, M. , Kamaei, S. , and Asemani, M. H. , 2017, “ Nonfragile Fuzzy Output Feedback Synchronization of a New Chaotic System: Design and Implementation,” ASME J. Comput. Nonlinear Dyn., 13(1), p. 011008. [CrossRef]
Davila, J. , Fridman, L. , and Levant, A. , 2005, “ Second-Order Sliding-Mode Observer for Mechanical Systems,” IEEE Trans. Autom. Control, 50(11), pp. 1785–1789. [CrossRef]
Levant, A. , 1998, “ Robust Exact Differentiation Via Sliding Mode Technique,” Automatica, 34(3), pp. 379–384. [CrossRef]
Levant, A. , 2007, “ Principles of 2-Sliding Mode Design,” Automatica, 43(4), pp. 576–586. [CrossRef]
Vázquez, C. , Aranovskiy, S. , Freidovich, L. B. , and Fridman, L. M. , 2016, “ Time-Varying Gain Differentiator: A Mobile Hydraulic System Case Study,” IEEE Trans. Control Syst. Technol., 24(5), pp. 1740–1750. [CrossRef]
Si-Ammour, A. , Djennoune, S. , and Bettayeb, M. , 2009, “ A Sliding Mode Control for Linear Fractional Systems With Input and State Delays,” Commun. Nonlinear Sci. Numer. Simul., 14(5), pp. 2310–2318. [CrossRef]
Efe, M. Ö. , 2010, “ Fractional Order Sliding Mode Controller Design for Fractional Order Dynamic Systems,” New Trends in Nanotechnology and Fractional Calculus Applications, Springer, Dordrecht, The Netherlands.
Balochian, S. , Sedigh, A. K. , and Zare, A. , 2011, “ Variable Structure Control of Linear Time Invariant Fractional Order Systems Using a Finite Number of State Feedback Law,” Commun. Nonlinear Sci. Numer. Simul., 16(3), pp. 1433–1442. [CrossRef]
Tenreiro-Machado, J. A. , 2012, “ The Effect of Fractional Order in Variable Structure Control,” Comput. Math. Appl., 64(10), pp. 3340–3350. [CrossRef]
Pisano, A. , Rapaicć, M. R. , Jelicčicć, Z. D. , and Usai, E. , 2010, “ Sliding Mode Control Approaches to the Robust Regulation of Linear Multivariable Fractional-Order Dynamics,” Int. J. Robust and Nonlinear Control, 20(18), pp. 2045–2056.
Efe, M. Ö. , 2011, “ Integral Sliding Mode Control of a Quadrotor With Fractional Order Reaching Dynamics,” Trans. Inst. Meas. Control, 33(8), pp. 985–1003. [CrossRef]
Hu, W. , Ding, D. , and Wang, N. , 2017, “ Nonlinear Dynamic Analysis of a Simplest Fractional-Order Delayed Memristive Chaotic System,” ASME J. Comput. Nonlinear Dyn., 12(4), p. 041003. [CrossRef]
Duc, T. M. , Hoa, N. V. , and Dao, T. P. , 2018, “ Adaptive Fuzzy Fractional-Order Nonsingular Terminal Sliding Mode Control for a Class of Second-Order Nonlinear Systems,” ASME J. Comput. Nonlinear Dyn., 13(3), p. 031004. [CrossRef]
Muñoz-Vázquez, A. J. , Parra-Vega, V. , and Sánchez-Orta, A. , 2018, “ Fractional-Order Nonlinear Disturbance Observer Based Control of Fractional-Order Systems,” ASME J. Comput. Nonlinear Dyn., 13(7), p. 071007. [CrossRef]
Muñoz-Vázquez, A. J. , Parra-Vega, V. , Sánchez-Orta, A. , and Romero-Galván, G. , 2017, “ Finite-Time Disturbance Observer Via Continuous Fractional Sliding Modes,” Trans. Inst. Meas. Control, 40(14), pp. 3953–3963.
Muñoz-Vázquez, A. J. , Parra-Veg, V. , Sánchez-Orta, A. , and Romero-Galván, G. , 2017, “ Output Feedback Finite-Time Stabilization of Systems Subject to Hölder Disturbances Via Continuous Fractional Sliding Modes,” Math. Probl. Eng., 2017, p. 3146231.
Muñoz-Vázquez, A. J. , Parra-Veg, V. , and Sánchez-Orta, A. , 2017, “ A Novel Continuous Fractional Sliding Mode Control,” Int. J. Syst. Sci., 48(13), pp. 2901–2908. [CrossRef]
Samko, S. , Kilbas, A. , and Marichev, O. , 1993, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, Switzerland.
Utkin, V. , and Shi, J. , 1996, “ Integral Sliding Mode in Systems Operating Under Uncertainty Conditions,” IEEE Conference on Decision and Control (CDC), Kobe, Japan, Dec. 13, pp. 4591–4596.
Oustaloup, A. , Mathieu, B. , and Lanusse, P. , 1995, “ The CRONE Control of Resonant Plants: Application to a Flexible Transmission,” Eur. J. Control, 1(2), pp. 113–121. [CrossRef]
Chen, Y. Q. , Petrás, I. , and Xue, D. , 2009, “ Fractional Order Control—A Tutorial,” IEEE American Control Conference (ACC), St. Louis, MO, June 10–12, pp. 1397–1411.


Grahic Jump Location
Fig. 2

Continuous nondifferentiable disturbance

Grahic Jump Location
Fig. 3

Simulation: output feedback fractional integral sliding mode control: (a) t versus (qd, q), (b) t versus Δq, (c) t versus S, and (d) t versus τ

Grahic Jump Location
Fig. 4

Experiment: output feedback fractional integral sliding mode control: (a) t versus (qd, q), (b) t versus Δq, (c) t versus s, and (d) t versus uPWM



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In