Torvik,
P. J.
, and
Bagley,
R. L.
, 1984, “
On the Appearance of the Fractional Derivative in the Behavior of Real Materials,” ASME J. Appl. Mech.,
51(2), pp. 294–298.

Podlubny,
I.
, 1999, Fractional Differential Equations,
Academic Press,
San Diego, CA.

Diethelm,
K.
, 2010, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type,
Springer Science & Business Media,
Berlin.

Baleanu,
D.
, and
Fernandez,
A.
, 2018, “
On Some New Properties of Fractional Derivatives With Mittag-Leffler Kernel,” Commun. Nonlinear Sci. Numer. Simul.,
59, pp. 444–462.

Baleanu,
D.
,
Jajarmi,
A.
, and
Hajipour,
M.
, 2018, “
On the Nonlinear Dynamical Systems Within the Generalized Fractional Derivatives With Mittag–Leffler Kernel,” Nonlinear Dyn.,
94(1), pp. 397–414.

Jajarmi,
A.
, and
Baleanu,
D.
, 2018, “
A New Fractional Analysis on the Interaction of HIV With CD4+ T-Cells,” Chaos, Solitons Fractals,
113, pp. 221–229.

Baleanu,
D.
,
Jajarmi,
A.
,
Bonyah,
E.
, and
Hajipour,
M.
, 2018, “
New Aspects of Poor Nutrition in the Life Cycle Within the Fractional Calculus,” Adv. Differ. Equations,
2018(1), p. 230.

Jajarmi,
A.
, and
Baleanu,
D.
, 2018, “
Suboptimal Control of Fractional-Order Dynamic Systems With Delay Argument,” J. Vib. Control,
24(12), pp. 2430–2446.

Diethelm,
K.
, and
Ford,
J.
, 2002, “
Numerical Solution of the Bagley-Torvik Equation,” BIT Numer. Math.,
42(3), pp. 490–507.

Diethelm,
K.
,
Ford,
N. J.
, and
Freed,
A. D.
, 2002, “
A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations,” Nonlinear Dyn.,
29(1/4), pp. 3–22.

Ray,
S. S.
, and
Bera,
R.
, 2005, “
Analytical Solution of the Bagley Torvik Equation by Adomian Decomposition Method,” Appl. Math. Comput.,
168(1), pp. 398–410.

Zolfaghari,
M.
,
Ghaderi,
R.
,
SheikholEslami,
A.
,
Ranjbar,
A.
,
Hosseinnia,
S.
,
Momani,
S.
, and
Sadati,
J.
, 2009, “
Application of the Enhanced Homotopy Perturbation Method to Solve the Fractional-Order Bagley–Torvik Differential Equation,” Phys. Scr.,
2009(T136), p. 014032.

Çenesiz,
Y.
,
Keskin,
Y.
, and
Kurnaz,
A.
, 2010, “
The Solution of the Bagley–Torvik Equation With the Generalized Taylor Collocation Method,” J. Franklin Inst.,
347(2), pp. 452–466.

Wang,
Z.
, and
Wang,
X.
, 2010, “
General Solution of the Bagley–Torvik Equation With Fractional-Order Derivative,” Commun. Nonlinear Sci. Numer. Simul.,
15(5), pp. 1279–1285.

Li,
Y.
, and
Zhao,
W.
, 2010, “
Haar Wavelet Operational Matrix of Fractional Order Integration and Its Applications in Solving the Fractional Order Differential Equations,” Appl. Math. Comput.,
216(8), pp. 2276–2285.

Ray,
S. S.
, 2012, “
On Haar Wavelet Operational Matrix of General Order and Its Application for the Numerical Solution of Fractional Bagley Torvik Equation,” Appl. Math. Comput.,
218(9), pp. 5239–5248.

Al-Mdallal,
Q. M.
,
Syam,
M. I.
, and
Anwar,
M.
, 2010, “
A Collocation-Shooting Method for Solving Fractional Boundary Value Problems,” Commun. Nonlinear Sci. Numer. Simul.,
15(12), pp. 3814–3822.

Raja,
M. A. Z.
,
Khan,
J. A.
, and
Qureshi,
I. M.
, 2011, “
Solution of Fractional Order System of Bagley-Torvik Equation Using Evolutionary Computational Intelligence,” Math. Probl. Eng.,
2011(1), p. 1.

Yüzbaşı,
Ş.
, 2013, “
Numerical Solution of the Bagley–Torvik Equation by the Bessel Collocation Method,” Math. Methods Appl. Sci.,
36(3), pp. 300–312.

Atanackovic,
T.
, and
Zorica,
D.
, 2013, “
On the Bagley–Torvik Equation,” ASME J. Appl. Mech.,
80(4), p. 041013.

Krishnasamy,
V.
, and
Razzaghi,
M.
, 2016, “
The Numerical Solution of the Bagley–Torvik Equation With Fractional Taylor Method,” ASME J. Comput. Nonlinear Dyn.,
11(5), p. 051010.

Gülsu,
M.
,
Öztürk,
Y.
, and
Anapali,
A.
, 2017, “
Numerical Solution the Fractional Bagley–Torvik Equation Arising in Fluid Mechanics,” Int. J. Comput. Math.,
94(1), pp. 173–184.

Arqub,
O. A.
, and
Maayah,
B.
, 2018, “
Solutions of Bagley–Torvik and Painlevé Equations of Fractional Order Using Iterative Reproducing Kernel Algorithm With Error Estimates,” Neural Comput. Appl.,
29(5), pp. 1465–1479.

Ford,
N. J.
, and
Simpson,
A. C.
, 2001, “
The Numerical Solution of Fractional Differential Equations: Speed Versus Accuracy,” Numer. Algorithm,
26(4), pp. 333–346.

Deng,
W. H.
, 2007, “
Short Memory Principle and a Predictor-Corrector Approach for Fractional Differential Equations,” J. Comput. Appl. Math.,
206(1), pp. 174–188.

Singh,
S. J.
, and
Chatterjee,
A.
, 2006, “
Galerkin Projections and Finite Elements for Fractional Order Derivatives,” Nonlinear Dyn.,
45(1–2), pp. 183–206.

Yuan,
L.
, and
Agrawal,
O. P.
, 2002, “
A Numerical Scheme for Dynamic Systems Containing Fractional Derivatives,” ASME J. Vib. Acoust.,
124(2), pp. 321–324.

Fitt,
A. D.
,
Goodwin,
A. R. H.
,
Ronaldson,
K. A.
, and
Wakeham,
W. A.
, 2009, “
A Fractional Differential Equation for a MEMS Viscometer Used in the Oil Industry,” J. Comput. Appl. Math.,
229(2), pp. 373–381.

Tang,
S.
,
Ying,
Y.
,
Lian,
Y.
,
Lin,
S.
,
Yang,
Y.
,
Wagner,
G. J.
, and
Liu,
W. K.
, 2016, “
Differential Operator Multiplication Method for Fractional Differential Equations,” Comput. Mech.,
58(5), pp. 879–888.

Chen,
Y. M.
,
Chen,
Y. X.
, and
Liu,
J. K.
, 2018, “
Transforming Linear FDEs With Rational Orders Into ODEs by Modified Differential Operator Multiplication Method,” J. Vib. Control,
25(2), pp. 373–385.