Abergel,
D.
, 2002, “
Chaotic Solutions of the Feedback Driven Bloch Equations,” Phys. Lett. A,
302(1), pp. 17–22.

Ghosh,
D.
,
Chowdhury,
A. R.
, and
Saha,
P.
, 2008, “
Bifurcation Continuation, Chaos and Chaos Control in Nonlinear Bloch System,” Commun. Nonlinear Sci. Numer. Simul.,
13(8), pp. 1461–1471.

Abergel,
D.
,
Joseph,
A. L.
, and
Lallemand,
J. Y.
, 2002, “
Self-Sustained Maser Oscillations of a Large Magnetization Driven by a Radiation Damping-Based Electronic Feedback,” J. Chem. Phys., Am. Inst. Phys.,
116, pp. 7073–7080.

Yu,
Q.
,
Liu,
F.
,
Turner,
I.
, and
Burrage,
K.
, 2014, “
Numerical Simulation of the Fractional Bloch Equations,” J. Comput. Appl. Math.,
255, pp. 635–651.

Magin,
R.
,
Feng,
X.
, and
Baleanu,
D.
, 2009, “
Solving the Fractional Order Bloch Equation,” Concepts Magn. Reson. Part A,
34A(1), pp. 16–23.

Petras,
I.
, 2011, “
Modeling and Numerical Analysis of Fractional-Order Bloch Equations,” Comput. Math. Appl.,
61, pp. 341–356.

Abuteen,
E.
,
Momani,
S.
, and
Alawneh,
A.
, 2014, “
Solving the Fractional Nonlinear Bloch System Using the Multi-Step Generalized Differential Transform Method,” Comput. Math. Appl.,
68(12), pp. 2124–2132.

Balac,
S.
, and
Chupin,
L.
, 2008, “
Fast Approximate Solution of Bloch Equation for Simulation of RF Artifacts in Magnetic Resonance Imaging,” Math. Comput. Modell.,
48(11–12), pp. 1901–1913.

Park,
J. H.
, 2006, “
Chaos Synchronization of Nonlinear Bloch Equations,” Chaos, Solitons Fractals,
27, pp. 357–361.

Kakmeni,
F. M. M.
,
Nguenang,
J. P.
, and
Kofane,
T. C.
, 2006, “
Chaos Synchronization in bi-Axialmagnets Modeled by Bloch Equation, Chaos,” Solitons Fractals,
30(3), pp. 690–699.

Qin,
S.
,
Liu,
F.
,
Turner,
I.
,
Vegh,
V.
,
Yu,
Q.
, and
Yang,
Q.
, 2017, “
Multi-Term Time-Fractional Bloch Equations and Application in Magnetic Resonance Imaging,” J. Comput. Appl. Math.,
319, pp. 308–319.

Bhalekar,
S.
,
Gejji,
V. D.
,
Baleanu,
D.
, and
Magin,
R.
, 2012, “
Transient Chaos in Fractional Bloch Equations,” Comput. Math. Appl.,
64(10), pp. 3367–3376.

Magin,
R. L.
,
Abdullah,
O.
,
Baleanu,
D.
, and
Zhou,
X. J.
, 2008, “
Anomalous Diffusion Expressed Through Fractional Order Differential Operators in the Bloch–Torrey Equation,” J. Magn. Reson.,
2, pp. 255–270.

Gómez-Aguilar,
J. F.
, 2019, “
Chaos in a Nonlinear Bloch System With Atangana-Baleanu Fractional Derivatives,” Numer. Methods Partial Differential Equations,
34(5), pp. 1716–1738.

Bhalekar,
S.
,
Gejji,
V. D.
,
Baleanu,
D.
, and
Magin,
R. L.
, 2011, “
Fractional Bloch Equation With Delay,” Comput. Math. Appl.,
5, pp. 1355–1365.

Mittal,
R. C.
, and
Pandit,
S.
, 2017, “
Quasilinearized Scale-3 Haar Wavelets-Based Algorithm for Numerical Simulation of Fractional Dynamical systems,” Eng. Comput.,
35(5), pp. 1907–1931.

Saeed,
U.
, and
Rehman,
M.
, 2013, “
Haar Wavelet-Quasilinearization Technique for Fractional Nonlinear Differential Equations,” Appl. Math. Comput.,
220, pp. 630–648.

Yi,
I. M.
, and
Huang,
J.
, 2014, “
Wavelet Operational Matrix Method for Solving Fractional Differential Equations With Variable Coefficients,” Appl. Math. Comput.,
230, pp. 383–394.

Chui,
C. K.
, and
Lian,
J. A.
, 1995, “
Construction of Compactly Supported Symmetric and Anti Symmetric Orthonormal Wavelets With Scale-3,” Appl. Comput. Harmonic Anal.,
2(1), pp. 21–51.

Kumar,
M.
, and
Pandit,
S.
, 2014, “
A Composite Numerical Scheme for the Numerical Simulation of Coupled Burgers' Equation,” Comput. Phys. Commun.,
185(3), pp. 809–817.

Pandit,
S.
,
Kumar,
M.
, and
Tiwari,
S.
, 2015, “
Numerical Simulation of Second-Order Hyperbolic Telegraph Type Equations With Variable Coefficients,” Comput. Phys. Commun.,
187, pp. 83–90.

Chen,
Y.
,
Yi,
M.
, and
Yu,
C.
, 2012, “
Error Analysis for Numerical Solution of Fractional Differential Equation by Haar Wavelets Method,” J. Comput. Sci.,
3(5), pp. 367–373.

Kaur,
H.
,
Mittal,
R. C.
, and
Mishra,
V.
, 2011, “
Haar Wavelet Quasilinearization Approach for Solving Nonlinear Boundary Value Problems,” Am. J. Comput. Math.,
01(3), pp. 176–182.

Jiwari,
R.
, 2015, “
A Hybrid Numerical Scheme for the Numerical Solution of the Burgers' Equation,” Comput. Phys. Commun.,
188, pp. 59–67.

Jiwari,
R.
, 2012, “
Haar Wavelet Quasilinearization Approach for Numerical Simulation of Burgers' Equation,” Comput. Phys. Commun.,
183(11), pp. 2413–2423.

Pandit,
S.
, and
Kumar,
M.
, 2014, “
Haar Wavelet Approach for Numerical Solution of Two Parameters Singularly Perturbed Boundary Value Problems,” Appl. Math. Inf. Sci.,
8, pp. 2965–2974.

Mittal,
R. C.
, and
Pandit,
S.
, 2018, “
New Scale-3 Haar Wavelets Algorithm for Numerical Simulation of Second Order Ordinary Differential Equations,” Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. (epub).

Mittal,
R. C.
, and
Pandit,
S.
, 2017, “
Sensitivity Analysis of Shock Wave Burgers' Equation Via a Novel Algorithm Based on Scale-3 Haar Wavelets,” Int. J. Comput. Math.,
95(3), pp. 601–625

Mittal,
R. C.
, and
Pandit,
S.
, 2017, “
Numerical Simulation of Unsteady Squeezing Nano-Fluid and Heat Flow Between Two Parallel Plates Using Wavelets,” Int. J. Therm. Sci.,
118, pp. 410–422.

Podlubny,
I.
, 1999, Fractional Differential Equations,
Academic Press,
NewYork.

Kumar,
D.
,
Singh,
J.
, and
Baleanu,
D.
, 2018, “
A New Analysis of the Fornberg-Whitham Equation Pertaining to a Fractional Derivative With Mittag-Leffler–Type Kernel,” Eur. Phys. J. Plus,
133, p. 70.

Kumar,
D.
,
Singh,
J.
, and
Baleanu,
D.
, 2018, “
Modified Kawahara Equation Within a Fractional Derivative, Modified Kawahara Equation Within a Fractional Derivative With Non-Singular Kernel,” Therm. Sci.,
22(2), pp. 789–796.

Kumar,
D.
,
Agarwal,
R. P.
, and
Singh,
J.
, 2018, “
Modified Numerical Scheme and Convergence Analysis for Fractional Model of Lienard's Equation,” J. Comput. Appl. Math.,
339, pp. 405–413.