Research Papers

Analysis and Numerical Solutions for Fractional Stochastic Evolution Equations With Almost Sectorial Operators

[+] Author and Article Information
Xiao-Li Ding

Department of Mathematics,
Xi'an Polytechnic University,
Xi'an, Shaanxi 710048, China
e-mail: dingding0605@126.com

Juan J. Nieto

Departamento de Análisis Matemático,
Facultad de Matemáticas,
Universidad de Santiago de Compostela,
Santiago de Compostela 15782, Spain
e-mail: juanjose.nieto.roig@usc.es

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received January 27, 2019; final manuscript received April 30, 2019; published online June 10, 2019. Assoc. Editor: Dumitru Baleanu.

J. Comput. Nonlinear Dynam 14(9), 091001 (Jun 10, 2019) (12 pages) Paper No: CND-19-1032; doi: 10.1115/1.4043725 History: Received January 27, 2019; Revised April 30, 2019

Fractional stochastic evolution equations often arise in theory and applications. Finding exact solutions of such equations is impossible in most cases. In this paper, our main goal is to establish the existence and uniqueness of mild solutions of the equations, and give a numerical method for approximating such mild solutions. The numerical method is based on a combination of subspaces decomposition technique and waveform relaxation method, which is called a frequency decomposition waveform relaxation method. Moreover, the convergence of the frequency decomposition waveform relaxation method is discussed in detail. Finally, several illustrative examples are presented to confirm the validity and applicability of the proposed numerical method.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Benson, D. A. , Wheatcraft, S. W. , and Meerschaert, M. M. , 2000, “ Application of a Fractional Advection-Dispersion Equation,” Water Resour. Res., 36(6), pp. 1403–1412. [CrossRef]
Babaei, A. , and Mohammadpour, A. , 2017, “ A Coupled Method to Solve Reaction-Diffusion Convection Equation With the Time Fractional Derivative Without Singular Kernel,” Progr. Fractional Differ. Appl., 3(3), pp. 199–205. [CrossRef]
Hilfer, R. , 2000, Applications of Fractional Calculus in Physics, World Scientific, Singapore.
Hall, M. G. , and Barrick, T. R. , 2008, “ From Diffusion-Weighted MRI to Anomalous Diffusion Imaging,” Magn. Reson. Med., 59(3), pp. 447–455. [CrossRef] [PubMed]
Cesbron, L. , Mellet, A. , and Trivisa, K. , 2012, “ Anomalous Transport of Particles in Plasma Physics,” Appl. Math. Lett., 25(12), pp. 2344–2348. [CrossRef]
Meher, R. , 2019, “ Analytical Study of Time Fractional Fractured Porous Medium Equation Under the Effect of Magnetic Field,” Spec. Top. Rev. Porous Media, 10(2), pp. 99–113. [CrossRef]
Metzler, R. , and Klafter, J. , 2000, “ The Random Walk's Guide to Anomalous Diffusion: A Fractional Dynamics Approach,” Phys. Rep., 339(1), pp. 1–77. [CrossRef]
Postnikov, E. B. , and Sokolov, I. M. , 2012, “ Model of Lateral Diffusion in Ultrathin Layered Films,” Physica A, 391(21), pp. 5095–5101. [CrossRef]
Alsaedi, A. , Nieto, J. J. , and Venktesh, V. , 2015, “ Fractional Electrical Circuits,” Adv. Mech. Eng., 7(12), pp. 1–7. [CrossRef]
Ducrot, A. , Magal, P. , and Prevost, K. , 2010, “ Integrated Semigroups and Parabolic Equations—Part I: Linear Perturbation of Almost Sectorial Operators,” J. Evol. Equations, 10(2), pp. 263–291. [CrossRef]
Henry, D. , 1981, Geometric Theory of Semilinear Parabolic Equations, Springer, Berlin.
von Wahl, W. , 1972, “ Einige Bemerkungen zu meiner Arbeit 'Gebrochene Potenzen Eines Elliptischen Operators Und Parabolische Differentialgleichungen in Räumen Hölderstetiger Funktionen,” Manuscripta Mathematica, 11(2), pp. 199–201. [CrossRef]
Periago, F. , and Straub, B. , 2002, “ A Functional Calculus for Almost Sectorial Operators and Applications to Abstract Evolution Equations,” J. Evol. Equations, 2(1), pp. 41–68. [CrossRef]
Arrieta, J. M. , Carvalho, A. , and Lozada-Cruz, G. , 2006, “ Dynamics in Dumbbell Domains—I: Continuity of the Set of Equilibria,” J. Differ. Equations, 231(2), pp. 551–579. [CrossRef]
Arrieta, J. M. , Carvalho, A. , and Lozada-Cruz, G. , 2009, “ Dynamics in Dumbbell Domains—II: The Limiting Problem,” J. Differ. Equations, 247(1), pp. 174–202. [CrossRef]
Arrieta, J. M. , Carvalho, A. , and Lozada-Cruz, G. , 2009, “ Dynamics in Dumbbell Domains—III: Continuity of Attractors,” J. Differ. Equations, 247(1), pp. 225–259. [CrossRef]
Carvalho, A. N. , Dlotko, T. , and Nascimento, M. J. D. , 2008, “ Non-Autonomous Semilinear Evolution Equations With Almost Sectorial Operators,” J. Evol. Equations, 8(4), pp. 631–659. [CrossRef]
Wang, R. N. , Chen, D. H. , and Xiao, T. J. , 2012, “ Abstract Fractional Cauchy Problems With Almost Sectorial Operators,” J. Differ. Equations, 252(1), pp. 202–235. [CrossRef]
Ding, X. L. , and Ahmad, B. , 2016, “ Analytical Solutions to Fractional Evolution Equations With Almost Sectorial Operators,” Adv. Differ. Equations, 2016, p. 203. [CrossRef]
Zhang, L. , Ding, Y. , Hao, K. , Hu, L. , and Wang, T. , 2014, “ Moment Stability of Fractional Stochastic Evolution Equations With Poisson Jumps,” Int. J. Syst. Sci., 45(7), pp. 1539–1547. [CrossRef]
Benson, D. A. , Meerschaert, M. M. , and Revielle, J. , 2013, “ Fractional Calculus in Hydrologic Modeling: A Numerical Perspective,” Adv. Water Resour., 51, pp. 479–497. [CrossRef] [PubMed]
Ding, X. L. , and Nieto, J. J. , 2018, “ Analytical Solutions for Multi-Time Scale Fractional Stochastic Differential Equations Driven by Fractional Brownian Motion and Their Applications,” Entropy, 20(1), p. 63. [CrossRef]
Ding, X. L. , and Nieto, J. J. , 2018, “ Analytical Solutions for Multi-Term Time-Space Fractional Partial Differential Equations With Nonlocal Damping Terms,” Frac. Calc. Appl. Anal., 21(2), pp. 312–335. [CrossRef]
Zou, G. A. , 2018, “ Galerkin Finite Element Method for Time-Fractional Stochastic Diffusion Equations,” Comput. Appl. Math., 37(4), pp. 4877–4898. [CrossRef]
Anh, V. V. , Broadbridge, P. , Olenko, A. , and Wang, Y. G. , 2018, “ On Approximation for Fractional Stochastic Partial Differential Equations on the Sphere,” Stochastic Environ. Res. Risk Assess., 32(9), pp. 2585–2603. [CrossRef]
Zou, G. A. , 2018, “ A Galerkin Finite Element Method for Time-Fractional Stochastic Heat Equation,” Comput. Math. Appl., 75(11), pp. 4135–4150. [CrossRef]
Asgari, Z. , and Hosseini, S. M. , 2018, “ Efficient Numerical Schemes for the Solution of Generalized Time Fractional Burgers Type Equations,” Numer. Algorithms, 77(3), pp. 763–792. [CrossRef]
Zou, G. A. , Wang, B. , and Zhou, Y. , 2018, “ Existence and Regularity of Mild Solutions to Fractional Stochastic Evolution Equations,” Math. Modell. Nat. Phenom., 13(1), p. 15. [CrossRef]
Taheri, Z. , Javadi, S. , and Babolian, E. , 2017, “ Numerical Solution of Stochastic Fractional Integro-Differential Equation by the Spectral Collocation Method,” J. Comput. Appl. Math., 321, pp. 336–347. [CrossRef]
Li, Y. J. , Wang, Y. J. , and Deng, W. H. , 2017, “ Galerkin Finite Element Approximations for Stochastic Space-Time Fractional Wave Equations,” SIAM J. Numer. Anal., 55(6), pp. 3173–3202. [CrossRef]
Kilbas, A. A. , Srivastava, H. M. , and Trujillo, J. J. , 2006, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol. 204, Elsevier Science B. V, Amsterdam, The Netherlands.
Wu, Q. , 2017, “ A New Type of the Gronwall-Bellman Inequality and Its Application to Fractional Stochastic Differential Equations,” Cogent Math., 4, p. 1279781.
Ding, X. L. , and Jiang, Y. L. , 2012, “ Semilinear Fractional Differential Equations Based on a New Integral Operator Approach,” Commun. Nonlinear Sci. Numer. Simul., 17(12), pp. 5143–5150. [CrossRef]
Gander, M. J. , 2004, “ A Frequency Decomposition Waveform Relaxation Algorithm for Semilinear Evolution Equations,” Electron. Trans. Numer. Anal., 17, pp. 181–194.
Nevanlinna, O. , 1983, Convergence of Iterations for Linear Equations, Birkhauser Verlag, Berlin.
Al-Refal, M. , 2000, “ Nonlinear Eigenfunction Expansion for Evolution Problem,” Ph.D. thesis, McGill University, Montreal, QC, Canada.
Tam, K. K. , 1996, “ Nonlinear Eigenfunction Expansion for a Problem in Microwave Heating,” Can. Appl. Math. Q., 4(3), pp. 311–325.
Zhou, W. N. , Zhou, X. H. , Yang, J. , Zhou, J. , and Tong, D. B. , 2018, “ Stability Analysis and Application for Delayed Neural Networks Driven by Fractional Brownian Noise,” IEEE Trans. Neural Networks Learn. Syst., 29(5), pp. 1491–1502. [CrossRef]


Grahic Jump Location
Fig. 1

Euler approximation solution and analytical solution for Eq. (42)

Grahic Jump Location
Fig. 2

Implicit Euler–Maruyama approximation solution for α = 0.5, λ = 2, μ = 1, and T =1

Grahic Jump Location
Fig. 3

Analytical solution and implicit Euler–Maruyama numerical solution for Eq. (44) for α = 1, λ = 2, μ = 1, u0 = 1, and T =1

Grahic Jump Location
Fig. 4

Numerical solution obtained by implicit Euler–Maruyama method for α = 0.6

Grahic Jump Location
Fig. 5

The error between waveform relaxation solution and the numerical solution obtained by implicit Euler–Maruyama method for α = 0.6 with iterative numbers k

Grahic Jump Location
Fig. 6

Solutions of system (47) with standard Brownian noise



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In