This paper presents a physically-based, control-oriented Diesel particulate filter (DPF) model for the purposes of NO and NO2 concentration estimations in Diesel engine aftertreatment systems. The presence of NO2 in exhaust gas plays an important role in selective catalytic reduction (SCR) NOx reduction efficiency. However, current NOx cannot differentiate NO and NO2 from the total NOx concentration. A model which can be used to estimate NO and NO2concentrations in exhaust gas flowing into the SCR catalyst is thus necessary. Current aftertreatment systems for light-, medium-, and heavy-duty Diesel engines generally include Diesel oxidation catalyst (DOC), DPF, and SCR. The DPF related NO/NO2 dynamics was investigated in this study, and a control-oriented model was developed and validated with experimental data.

This content is only available via PDF.
You do not currently have access to this content.