The U.S. Department of Energy/Pittsburgh Energy Technology Center (DOE/PETC) initiated the Engineering Development of Coal-Fired High Performance Power Generation Systems Program to develop an advanced technology for coal-fired electric plants that can boost efficiency and reduce emissions. This three phase program includes concept definition and preliminary R&D, engineering development and testing which will culminate in the operation of a prototype plant by the year 2005.

This paper presents an overview of the work proposed by a Westinghouse-led R&D team which includes Babcock and Wilcox, Black and Veatch, FluiDyne Engineering, and Allegheny Power Systems to design and evaluate the technical and economic feasibility and relevant R&D required for one or more advanced power generation concepts developed during Phase I. Allison Division of General Motors, ERC and SeiTec are also supporting the Westinghouse team in the initial phase of this program.

Key objectives include evaluation of plant cycle designs capable of at least 47-percent efficiency, substantial reductions in airborne emissions below current new source performance standards (NSPS) for coal-fired boilers, and solid waste generation of only benign material.

The proposed design approach includes an indirect coal-fired combustion turbine combined cycle system which incorporates a high-temperature advanced furnace with ceramic heat exchanger components. The indirect-fired system circumvents some of the technical challenges of a direct coal-fired system (Bannister et al., 1990). Proposed alternative designs have plant efficiencies that range up to 53 percent.

This content is only available via PDF.