The conversion of existing diesel engines to spark ignition (SI) operation by adding a low-pressure injector in the intake manifold for fuel delivery and replacing the original high-pressure fuel injector with a spark plug to initiate and control the combustion process can reduce U.S. dependence on petroleum imports and increase natural gas (NG) applications in heavy-duty transportation sectors. Since the conventional diesel combustion chamber (i.e., flat-head-and-bowl-in-piston-chamber) creates high turbulence, the converted NG SI engine can operate leaner with stable and repeatable combustion process. However, existing literatures point to a long late-combustion duration and increased unburned hydrocarbon emissions in such retrofitted engines that maintained the original combustion chamber. Consequently, the main objective of this paper was to report recent findings of NG combustion characteristics inside a bowl-in-piston combustion chamber that will add to the general understanding of the phenomena. The new results indicated that the premixed NG burn inside the bowl-in-piston combustion chamber will separate into a bowl-burn and a squish-burn processes in terms of burning location and timing. The slow burning event in the squish region explains the low slope of the burn rate towards the end of combustion in existing studies (hence the longer late-combustion period). In addition, the less-favorable conditions for the combustion in the squish region explained the increased carbon monoxide and unburned hydrocarbon emissions.

This content is only available via PDF.
You do not currently have access to this content.