Abstract

Melt pool size is a critical intermediate measure that reflects the outcome of a laser powder bed fusion process setting. Reliable melt pool predictions prior to builds can help users to evaluate potential part defects such as lack of fusion and over melting. This paper develops a layer-wise Neighboring-Effect Modeling (L-NBEM) method to predict melt pool size for 3D builds. The proposed method employs a feedforward neural network model with ten layer-wise and track-wise input variables. An experimental build using a spiral concentrating scan pattern with varying laser power was conducted on the Additive Manufacturing Metrology Testbed at the National Institute of Standards and Technology. Training and validation data were collected from 21 completed layers of the build, with 6,192,495 digital commands and 118,928 in-situ melt pool coaxial images. The L-NBEM model using the neural network approach demonstrates a better performance of average predictive error (12.12%) by leave-one-out cross-validation method, which is lower than the benchmark NBEM model (15.23%), and the traditional power-velocity model (19.41%).

This content is only available via PDF.
You do not currently have access to this content.