Nanofluids are heat transfer liquids which contain small volume fractions of suspended nanoparticles, with sizes smaller than 100 nm, in colloidal solutions. Numerous experiments on the static thermal conductivity of these fluids have revealed a greater-than-expected effective thermal conductivity, and thus there is interest in utilizing nanofluids for heat transfer applications. The nanofluid thermal performance under convective heat transfer conditions is of even greater interest. Therefore, we report here our initial convection experiments with nanofluids. Our experimental test section consists of a single millimeter-size, stainless steel tube subjected to constant wall heat flux. The cooling nanofluids, flowed through the test tube, consist of Al2O3 nanoparticles and deionized water. Both wall temperature and fluid temperature are measured. Compared with base fluid, the Nu of 20-nm Al2O3-deionized water nanofluids had 8% enhancement for φ = 1 vol% but only 3% for φ = 0.5 vol% at Re = 270. Based on the results, the utility of convective heat sinks containing nanofluids are evaluated for contemporary uses.

1.
Eastman
J. A.
,
Phillpot
S. R.
,
Choi
S. U. S.
,
Keblinski
P.
,
2004
, “
Thermal Transport in Nanofluids
,”
Annual Review of Material Research
, vol.
34
, pp.
219
246
.
2.
Choi
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids with Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
, Vol.
231
, ASME, pp.
99
105
.
3.
Prasher
R. S.
,
Bhattacharya
P.
and
Phelan
P. E.
,
2005
, “
Thermal conductivity of nanoscale colloidal solutions (nanofluids)
,”
Physical Review Letters
, Vol.
94
, No.
2
, pp.
025901
-
1
.
4.
Phelan
P. E.
,
Bhattacharya
P.
, and
Prasher
R. S.
,
2005
, “
Nanofluids for Heat Transfer Applications
,”
Annual Reviews of Heat Transfer
, Vol.
14
, pp.
255
275
.
5.
Nara
S.
,
Bhattacharya
P.
,
Vijayan
P.
,
Lai
W.
,
Rosenthal
W.
,
Phelan
P. E.
,
Prasher
R. S.
,
Song
D. W.
,
Wang
J.
,
2005
, “
Experimental determination of the effect of varying the fluid on static thermal conductivity of nanofluids
,”
American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD
, Vol.
376
, No.
1
, pp.
755
758
.
6.
Bhattacharya
P.
,
Nara
S.
,
Vijayan
P.
,
Tang
T.
,
Lai
W.
,
Phelan
P. E.
,
Prasher
R. S.
;
Song
D. W.
,
Wang
J.
,
2004
, “
Evaluation of the temperature oscillation technique to calculate thermal conductivity of water and systematic measurement of the thermal conductivity of aluminum oxide - Water nanofluid
,”
American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD
, Vol.
375
, No.
2
, pp.
51
56
.
7.
Lee
S.
,
Choi
S. U. S.
,
Li
S.
and
Eastman
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
Journal of Heat Transfer
, Vol.
121
, pp.
280
289
.
8.
Eastman
J. A.
,
Choi
S. U. S
,
Li
S.
,
Yu
W.
, and
Thompson
L. J.
,
2001
, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-based Nanofluids Containing Copper Nanoparticles
,”
Applied Physics Letters
, Vol.
78
, No.
6
, pp.
718
720
.
9.
Xie
H.
,
Wang
J.
,
Xi
T.
,
Liu
Y.
,
Ai
F.
and
Wu
Q.
,
2002
, “
Thermal Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles
,”
Journal of Applied Physics
, Vol.
91
, No
7
, pp.
4568
4572
.
10.
Das
S. K.
,
Putra
N.
,
Thiesen
P.
,
Roetzel
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity enhancement for nanofluids
,”
Journal of Heat Transfer
, Vol.
125
, pp.
567
574
.
11.
Murshed
S. M. S.
,
Leong
K. C.
,
Yang
C.
,
2005
, “
Enhanced Thermal Conductivity of TiO2 - Water Based Nanofluids
,”
International Journal of Thermal Science
, Vol.
44
, pp.
367
373
.
12.
Hong
T. K
,
Yang
H. S
,
Choi
C. J.
,
2005
, “
Study of the Enhanced Thermal Conductivity of Fe Nanofluids
,”
Journal of Applied Science
, Vol.
97
, pp.
064311
-
1
.
13.
Xuan
Y.
and
Li
Q.
,
2003
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
Journal of Heat Transfer
, Vol.
125
, pp.
151
155
.
14.
Lai, W.Y. Duculescu, B., Phelan, P.E., Prasher, R., In Press, “A Review of Heat Transfer with Nanofluids for Electronics Packaging,” ITHERM06.
15.
Li
Q.
,
Xuan
Y.
,
Jiang
J.
, and
Xu
J. W.
,
2005
, “
Experimental Investigation on Flow and Convective Heat Transfer Feature of a Nanofluid for Aerospace Thermal Management
,”
Journal of Astronautics
, Vol.
26
, pp.
391
394
.
16.
Xuan
Y.
, and
Roetzel
W.
,
2000
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
International Journal of Heat and Mass Transfer
, Vol.
43
, pp.
3701
3707
.
17.
Xuan
Y.
, and
Li
Q.
,
2004
, “
Flow and Heat Transfer Performances of Nanofluids inside Small Hydraulic Diameter Flat Tube
,”
Journal of Engineering Thermophysics
, Vol.
25
, No.
2
, pp.
305
307
.
18.
Wen
D.
,
Ding
Y.
,
2004
, “
Experimental Investigation into Convective Heat Transfer of Nanofluids at the Entrance Region under Laminar Flow Conditions
,”
International Journal of Heat and Mass Transfer
, Vol.
47
, pp.
5181
5188
.
19.
Yang
Y.
,
Zhang
Z. G.
,
Grulke
E. A.
,
Anderson
W. B.
, and
Wu
G.
,
2005
, “
Heat Transfer Properties of Nanoparticle-in-fluid Dispersions (Nanofluids) in Laminar Flow
,”
International Journal of Heat and Mass Transfer
, Vol.
48
, pp.
1107
1116
.
20.
Faulkner, D., Rector, D.R., Davison, J.J., and Shekarriz, R., 2004, “Enhanced Heat Transfer through the Use of Nanofluids in Forced Convection,” Proceedings of ASME Heat Transfer Division - 2004, pp.219–224.
21.
Xuan
Y. M
,
Yu
K.
,
Wu
X.
, and
Li
Q.
,
2004
, “
Flow and Heat Transfer Simulation of Nanofluids with Lattice-Boltzmann Method
,”
Journal of Engineering Thermophysics
, Vol.
25
, No.
6
, pp.
1022
1024
.
22.
Mai¨ga
S. E. B.
,
Nguyen
C. T.
,
Galanis
N.
and
Roy
G.
,
2004
, “
Heat Transfer Behaviours of Nanofluids in a Uniformly Heated tube
,”
Superlattices and Microstructures
, Vol.
35
, pp.
543
557
.
23.
Mai´ga
S. E. B.
,
Palm
S. J.
,
Nguyen
C. T.
,
Roy
G.
, and
Galanis
N.
,
2005
, “
Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows
,”
International Journal of Heat and Fluid Flow
, Vol.
26
, pp.
530
546
.
24.
W. Daungthongsuk & S. Wongwises, In Press, “A Critical Review of Convective Heat Transfer of Nanofluids,” Renewable & Sustainable Energy Reviews.
25.
Ding
Y.
,
Alias
H.
,
Wen
D.
,
Williams
R. A.
,
2005
, “
Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids)
,”
International Journal of Heat and Mass Transfer
, Vol.
49
, pp.
240
250
.
26.
Heris
S. Z.
,
Etemad
S. Gh.
,
Esfahany
M. N.
,
2006
, “
Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer
,”
International Communications in Heat and Mass Transfer
, Vol.
33
, pp.
529
535
.
27.
Incropera F.P and DeWitt D.P, 1996, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York.
28.
Kline
S. J.
, and
McClintock
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mechanical Engineering
, Vol.
75
, No.
1
, pp.
3
8
.
29.
Kim
J. H.
,
Simon
T. W.
, and
Viskanta
R.
,
1993
, “
Journal of Heat Transfer Policy on Reporting Uncertainties in Experimental Measurements and Results
,”
Journal of Heat Transfer
, Vol.
115
, pp.
5
6
.
30.
Shah, R.K and London, A.L., 1978. “Laminar Flow Forced Convetion in Ducts,” Advances in Heat Transfer, Academic Press, New York.
31.
Kays, W.M. and Crawford, M.E., 1993, Convective Heat and Mass Transfer, McGraw-Hill, Inc.
This content is only available via PDF.
You do not currently have access to this content.