The linear in-plane free vibration of a thin, homogeneous, viscoelastic, rotating annular disk is investigated. In the development of an analytical solution, two dimensional elastodynamic theory is employed and the viscoelastic material for the medium is allowed by assuming complex elastic moduli. The general governing equations of motion are derived by implementing plane stress theory. Natural frequencies are computed for several modes at specific radius ratios with fixed-free boundary conditions and modal loss factors for different damping ratios are determined. The computed results were compared to previously established results. It was observed that the effects of rotational speed and hysteretic damping ratio on natural frequency and elastic stability of the rotating disks were related to the mode of vibration and type of circumferential wave occurring.

This content is only available via PDF.
You do not currently have access to this content.