This paper summarizes the design, modeling, and initial evaluation of a hinged structure for friction measurement in surface micromachining technology. While the area requirements are small, the present structure allows a much larger velocity and pressure range to be evaluated as compared to comb drive structures. The device consists of a cantilevered driver beam connected to a friction pad through a strategically located hinge. AC excitation of the beam flexure forces axial sliding of the friction pad due to beam foreshortening. Normal force is controlled by DC voltage on wings adjacent to the friction pad. While the achievable slip is small (10–30 nm), it is sufficient to disengage contacting asperities and engage new points of contact, and thus should be representative of frictional processes. Furthermore, the design enables the friction pad contact area to remain relatively constant over the excitation cycle. Computer simulation results are provided to mimic on-going experimental work. Increased friction forces are shown to enhance the size of hysteresis loops relating beam deflection to driver voltage.

This content is only available via PDF.
You do not currently have access to this content.