The overall object of this paper is a systematic study of gaseous flows in two-dimensional micro- and nano-channels in terms of the effects of compressibility, rarefaction, and surface roughness which are usually neglected in conventional flow analysis, using direct simulation Monte Carlo (DSMC) method. The flows are mainly in slip and transition regimes that are often encountered in Microelectromechanical Systems (MEMS), Nanoelectromechanical Systems (NEMS), and other microscale devices in diverse fields like molecular biology, space propulsion, and particle physics. For the effect of compressibility, two flows with same outlet Knudsen number (Kn) but different pressure drop ratios (case1:1.3, case2: 4.5) were simulated. It was found that high pressure drop flow (case2) show a 15% higher friction coefficient than that of a fully developed flow while the low pressure drop flow (case1) is consistent with incompressible flow prediction. The inspection for the velocity profile development shows that when pressures drop increase along the channel, the center-line velocity become flatten and the velocity gradients near the wall are higher compared with parabolic velocity profile. The effect of rarefaction was studied by simulating two nitrogen flows with low-pressure drop ratio (= 1.9) but different Kn numbers. (case3: 0.043, case4: 0.083). The pressure distribution, velocity profile, local friction coefficient are checked. The comparison with continuum flow theory (fRe = 24.0) shows that the rarefactions reduce the friction coefficient by 22% and 36% for case3 and case4, respectively. Apparent velocity slips along the channel wall exist for these flows. A locally fully developed model based on local velocity slip and fully developed assumptions predicts the friction coefficient accurately but fails in transition region where the Kn is over 0.1. Two important ratios are investigated for surface roughness effect in micro- and nano-channel flows: relative roughness and distribution of roughness. The DSMC results show that the surface roughness has more profound effect for a lower Kn number microchannel flow. The roughness distribution also plays a very important role in microchannel flows. The denser the roughness distribution, the higher friction coefficient. The future work will focus on flows in free-molecular flow regime and three-dimension geometries.
Skip Nav Destination
2007 First International Conference on Integration and Commercialization of Micro and Nanosystems
January 10–13, 2007
Sanya, Hainan, China
Conference Sponsors:
- Nanotechnology Institute
ISBN:
0-7918-4265-7
PROCEEDINGS PAPER
Modeling Gaseous Flows Through Micro- and Nano-Channels
Hongwei Sun,
Hongwei Sun
University of Massachusetts at Lowell, Lowell, MA
Search for other works by this author on:
Mohammad Faghri
Mohammad Faghri
University of Rhode Island, Kingston, RI
Search for other works by this author on:
Hongwei Sun
University of Massachusetts at Lowell, Lowell, MA
Mohammad Faghri
University of Rhode Island, Kingston, RI
Paper No:
MNC2007-21302, pp. 1043-1049; 7 pages
Published Online:
June 8, 2009
Citation
Sun, H, & Faghri, M. "Modeling Gaseous Flows Through Micro- and Nano-Channels." Proceedings of the 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems. First International Conference on Integration and Commercialization of Micro and Nanosystems, Parts A and B. Sanya, Hainan, China. January 10–13, 2007. pp. 1043-1049. ASME. https://doi.org/10.1115/MNC2007-21302
Download citation file:
3
Views
Related Proceedings Papers
Related Articles
Rarefaction and Compressibility Effects in Gas Microflows
J. Fluids Eng (September,1996)
Experimental Investigation of Gas Flow in Microchannels
J. Heat Transfer (October,2004)
Related Chapters
The Design and Implement of Remote Inclinometer for Power Towers Based on MXA2500G/GSM
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Hydraulic Resistance
Heat Transfer & Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications
Developing Human Performance Measures (PSAM-0207)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)