A simple semi-theoretical method for calculating two-phase frictional pressure gradient in porous media using asymptotic analysis is presented. Two-phase frictional pressure gradient is expressed in terms of the asymptotic single-phase frictional pressure gradients for liquid and gas flowing alone. In the present model, the two-phase frictional pressure gradient for x ≅ 0 is nearly identical to single-phase liquid frictional pressure gradient. Also, the two-phase frictional pressure gradient for x ≅ 1 is nearly identical to single-phase gas frictional pressure gradient. The proposed model can be transformed into either a two-phase frictional multiplier for liquid flowing alone (φl2) or two-phase frictional multiplier for gas flowing alone (φg2) as a function of the Lockhart-Martinelli parameter, X. The advantage of the new model is that it has only one fitting parameter (p) while the other existing correlations such as Larkins et al. correlation, Sato et al. correlation, and Goto and Gaspillo correlation have three constants. Therefore, calibration of the new model to experimental data is greatly simplified. The new model is able to model the existing multi parameters correlations by fitting the single parameter p. Specifically, p = 1/3.25 for Midoux et al. correlation, p = 1/3.25 for Rao et al. correlation, p = 1/3.5 for Tosun correlation, p = 1/3.25 for Larkins et al. correlation, p = 1/3.75 for Sato et al. correlation, and p = 1/3.5 for Goto and Gaspillo correlation.

This content is only available via PDF.
You do not currently have access to this content.