Newly developed cancer therapies must pass through a series of increasingly complex testing regimens before obtaining FDA approval as valid treatments. The costs of these tests increase rapidly as the physiological accuracy of the platform increases, from initial proof-of-concept in static tissue cultures, to treatment of animal models, and ultimately to human clinical trials. Three-dimensional engineered blood-perfused tumor models are becoming increasingly important as intermediate platforms for the study and treatment of cancer, as they are superior to static two-dimensional cultures in their reproduction of relevant physiological conditions and are inexpensive in comparison to animal models. Because of this, the design of well-characterized adaptable in vitro vascular tumor models has become a central objective of the emerging field of tumor engineering. Characterization of the flow within three-dimensional tumor models is critical for quantifying fluid shear stress and determining its role in pivotal tumor development processes such as tumor cell angiogenesis and metastasis. Ultimately, this knowledge will provide new avenues for therapeutic modulation of the tumor microenvironment.
Skip Nav Destination
ASME 2012 Summer Bioengineering Conference
June 20–23, 2012
Fajardo, Puerto Rico, USA
Conference Sponsors:
- Bioengineering Division
ISBN:
978-0-7918-4480-9
PROCEEDINGS PAPER
Blood Flow Characterization in a Perfused Collagen Vessel Bioreactor Using X-Ray Micro-PIV
Elizabeth Voigt,
Elizabeth Voigt
Virginia Tech, Blacksburg, VA
Search for other works by this author on:
Cara F. Buchanan,
Cara F. Buchanan
Virginia Tech, Blacksburg, VA
Search for other works by this author on:
M. Nichole Rylander,
M. Nichole Rylander
Virginia Tech, Blacksburg, VA
Search for other works by this author on:
Pavlos Vlachos
Pavlos Vlachos
Virginia Tech, Blacksburg, VA
Search for other works by this author on:
Elizabeth Voigt
Virginia Tech, Blacksburg, VA
Cara F. Buchanan
Virginia Tech, Blacksburg, VA
M. Nichole Rylander
Virginia Tech, Blacksburg, VA
Pavlos Vlachos
Virginia Tech, Blacksburg, VA
Paper No:
SBC2012-80700, pp. 261-262; 2 pages
Published Online:
July 19, 2013
Citation
Voigt, E, Buchanan, CF, Rylander, MN, & Vlachos, P. "Blood Flow Characterization in a Perfused Collagen Vessel Bioreactor Using X-Ray Micro-PIV." Proceedings of the ASME 2012 Summer Bioengineering Conference. ASME 2012 Summer Bioengineering Conference, Parts A and B. Fajardo, Puerto Rico, USA. June 20–23, 2012. pp. 261-262. ASME. https://doi.org/10.1115/SBC2012-80700
Download citation file:
3
Views
Related Proceedings Papers
Related Articles
Radio-Frequency Ablation in a Realistic Reconstructed Hepatic Tissue
J Biomech Eng (June,2007)
A First-Order Mechanical Device to Model Traumatized Craniovascular Biodynamics
J. Med. Devices (March,2007)
Pre-Clinical Evaluation of Direct Current Ablation for the Treatment of Benign Prostatic Hyperplasia
J. Med. Devices (June,2009)
Related Chapters
Experimental Studies
Nanoparticles and Brain Tumor Treatment
Conclusions
Nanoparticles and Brain Tumor Treatment
Introduction
Nanoparticles and Brain Tumor Treatment