The open topology of a carbon nanoscroll (CNS) inspires potential applications such as high capacity hydrogen storage. Enthusiasm for this promising application aside, one crucial problem that remains largely unexplored is how to shuttle the hydrogen molecules adsorbed inside CNSs. Using molecular dynamics simulations, we demonstrate two effective transportation mechanisms of hydrogen molecules enabled by the torsional buckling instability of a CNS and the surface energy induced radial shrinkage of a CNS. As these two mechanisms essentially rely on the nonbonded interactions between the hydrogen molecules and the CNS, it is expected that similar mechanisms could be applicable to the transportation of molecular mass of other types, such as water molecules, deoxyribonucleic acids (DNAs), fullerenes, and nanoparticles.

References

1.
Braga
,
S. F.
,
Coluci
,
V. R.
,
Legoas
,
S. B.
,
Giro
,
R.
,
Galvão
,
D. S.
, and
Baughman
,
R. H.
,
2004
, “
Structure and Dynamics of Carbon Nanoscrolls
,”
Nano Lett.
,
4
(
5
), pp.
881
884
.10.1021/nl0497272
2.
Coluci
, V
. R.
,
Braga
,
S. F.
,
Baughman
,
R. H.
, and
Galvão
,
D. S.
,
2007
, “
Prediction of the Hydrogen Storage Capacity of Carbon Nanoscrolls
,”
Phys. Rev. B
,
75
(
12
), p.
125404
.10.1103/PhysRevB.75.125404
3.
Braga
,
S. F.
,
Coluci
,
V. R.
,
Baughman
,
R. H.
, and
Galvão
,
D. S.
,
2007
, “
Hydrogen Storage in Carbon Nanoscrolls: An Atomistic Molecular Dynamics Study
,”
Chem. Phys. Lett.
,
441
(
1–3
), pp.
78
82
.10.1016/j.cplett.2007.04.060
4.
Mpourmpakis
,
G.
,
Tylianakis
,
E.
, and
Froudakis
,
G. E.
,
2007
, “
Carbon Nanoscrolls: A Promising Material for Hydrogen Storage
,”
Nano Lett.
,
7
(
7
), pp.
1893
1897
.10.1021/nl070530u
5.
Shi
,
X.
,
Pugno
,
N. M.
,
Cheng
,
Y.
, and
Gao
,
H.
,
2009
, “
Gigahertz Breathing Oscillators Based on Carbon Nanoscrolls
,”
Appl. Phys. Lett.
,
95
(
16
), p.
163113
.10.1063/1.3253423
6.
Xie
,
X.
,
Ju
,
L.
,
Feng
,
X.
,
Sun
,
Y.
,
Zhou
,
R.
,
Liu
,
K.
,
Fan
,
S.
,
Li
,
Q.
, and
Jiang
,
K.
,
2009
, “
Controlled Fabrication of High-Quality Carbon Nanoscrolls From Monolayer Graphene
,”
Nano Lett.
,
9
(
7
), pp.
2565
2570
.10.1021/nl900677y
7.
Shi
,
X.
,
Cheng
,
Y.
,
Pugno
N. M.
, and
Gao
,
H.
,
2010
, “
Tunable Water Channels With Carbon Nanoscrolls
,”
Small
,
6
(
6
), pp.
739
744
.10.1002/smll.200902286
8.
Zhang
,
Z.
, and
Li
,
T.
,
2010
, “
Carbon Nanotube Initiated Formation of Carbon Nanoscrolls
,”
Appl. Phys. Lett.
,
97
(
8
), p.
081909
.10.1063/1.3479050
9.
Shi
,
X. H.
,
Pugno
,
N. M.
, and
Gao
,
H. J.
,
2010
, “
Mechanics of Carbon Nanoscrolls: A Review
,”
Acta Mech. Solida Sinica
,
23
(
6
), pp.
484
497
.10.1016/S0894-9166(11)60002-5
10.
Shi
,
X.
,
Cheng
,
Y.
,
Pugno
,
N. M.
, and
Gao
,
H.
,
2010
, “
A Translational Nanoactuator Based on Carbon Nanoscrolls on Substrates
,”
Appl. Phys. Lett.
,
96
(
5
), p.
053115
.10.1063/1.3302284
11.
Zhang
,
Z.
, and
Li
,
T.
,
2011
, “
Ultrafast Nano-Oscillators Based on Interlayer-Bridged Carbon Nanoscrolls
,”
Nanoscale Res. Lett.
,
6
, p.
470
.10.1186/1556-276X-6-470
12.
Wang
,
Q.
,
2009
, “
Transportation of Hydrogen Molecules Using Carbon Nanotubes in Torsion
,”
Carbon
,
47
(
7
), pp.
1870
1873
.10.1016/j.carbon.2009.03.030
13.
Wang
,
Q.
,
2009
, “
Atomic Transportation Via Carbon Nanotubes
,”
Nano Lett.
,
9
(
1
), pp.
245
249
.10.1021/nl802829z
14.
Duan
,
W. H.
, and
Wang
,
Q.
,
2010
, “
Water Transport With a Carbon Nanotube Pump
,”
ACS Nano
,
4
(
4
), pp.
2338
2344
.10.1021/nn1001694
15.
Wu
,
N.
,
Wang
,
Q.
, and
Arash
,
B.
,
2012
, “
Ejection of DNA Molecules From Carbon Nanotubes
,”
Carbon
,
50
(
13
), pp.
4945
4952
.10.1016/j.carbon.2012.06.026
16.
Insepov
,
Z.
,
Wolf
,
D.
, and
Hassanein
,
A.
,
2006
, “
Nanopumping Using Carbon Nanotubes
,”
Nano Lett.
,
6
(
9
), pp.
1893
1895
.10.1021/nl060932m
17.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S. J.
,
Ni
,
B.
, and
Sinnott
,
S. B.
,
2002
, “
A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons
,”
J. Phys. Condens. Matter
,
14
(
4
), pp.
783
802
.10.1088/0953-8984/14/4/312
18.
Stuart
,
S. J.
,
Tutein
,
A. B.
, and
Harrison
,
J. A.
,
2000
, “
A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,”
J. Chem. Phys.
,
112
(
14
), pp.
6472
6486
.10.1063/1.481208
19.
Gu
,
C.
,
Gao
,
G. H.
,
Yu
,
Y. X.
, and
Mao
,
Z.-Q.
,
2001
, “
Simulation Study of Hydrogen Storage in Single Walled Carbon Nanotubes
,”
Int. J. Hydrogen Energy
,
26
(
7
), pp.
691
696
.10.1016/S0360-3199(01)00005-2
20.
Zhou
,
B.
,
Guo
,
W. L.
, and
Tang
,
C.
,
2008
, “
Chemisorption of Hydrogen Molecules on Carbon Nanotubes: Charging Effect From First-Principles Calculations
,”
Nanotechnology
,
19
(
7
), p.
075707
.10.1088/0957-4484/19/7/075707
21.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular-Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.10.1006/jcph.1995.1039
22.
Zhang
,
Z.
,
Huang
,
Y.
, and
Li
,
T.
,
2012
, “
Buckling Instability of Carbon Nanoscrolls
,”
J. Appl. Phys.
,
112
(
6
), p.
063515
.10.1063/1.4754312
23.
Allen
,
M. P.
, and
Tildesley
,
D. J.
,
1987
,
Computer Simulation of Liquids
,
Clarendon
,
Oxford, UK
.
You do not currently have access to this content.