This study addresses the dynamic behaviors of a bearing supporting structure composed of rubber O-rings. To develop an analytical method to predict the dynamic properties of the O-rings without using any dimension-dependent experimental data, the viscoelastic behaviors of the material were modeled with Maxwell-hyperelasticity proposed by the authors. The viscoelastic model was implemented using the finite element method (FEM), and a dynamic analysis was performed, the results of which were compared with the experimental data. The influences of the dimensions, frequency, squeeze, and surface condition on the dynamic properties of the O-rings were clarified, and independent design parameters were determined. The values and distributions of hydrostatic pressure, principal strain, and viscous dissipation energy were also discussed.

References

1.
Dousti
,
S.
,
Allaire
,
P. E.
,
Dimond
,
T. W.
, and
Wood
,
H. E.
,
2013
, “
Time Transient Analysis of Horizontal Rigid Rotor Supported With O-Ring Sealed Squeeze Film Damper
,”
ASME
Paper No. IMECE2013-63907
.
2.
Kligerman
,
Y.
,
Gottlieb
,
O.
, and
Darlow
,
M. S.
,
1998
, “
Nonlinear Vibration of a Rotating System With an Electromagnetic Damper and a Cubic Restoring Force
,”
J. Vib. Control
,
4
(
2
), pp.
131
144
.
3.
Kligerman
,
Y.
, and
Gottlieb
,
O.
,
1998
, “
Dynamics of a Rotating System With a Nonlinear Eddy-Current Damper
,”
ASME J. Vib. Acoust.
,
120
(
4
), pp.
848
853
.
4.
Ertas
,
B.
,
Cerny
,
V.
,
Kim
,
J.
, and
Polreich
,
V.
,
2015
, “
Stabilizing a 46 MW Multistage Utility Steam Turbine Using Integral Squeeze Film Bearing Support Dampers
,”
ASME J. Eng. Gas Turbines Power
,
137
(
5
), p.
052506
.
5.
Shoyama
,
T.
,
Kouda
,
K.
, and
Ogata
,
T.
,
2016
, “
Saturated Water Journal Bearings of a Turbo Compressor
,”
ASME
Paper No. GT2016-58131
.
6.
Belforte
,
G.
,
Colombo
,
F.
,
Raparelli
,
T.
, and
Viktorov
,
V.
,
2008
, “
High-Speed Rotor With Air Bearings Mounted on Flexible Supports: Test Bench and Experimental Results
,”
ASME J. Tribol.
,
130
(
2
), p.
021103
.
7.
Tomioka
,
J.
, and
Miyanaga
,
N.
,
2008
, “
Measurement of Dynamic Properties of O-Rings and Stability Threshold of Flexibly Supported Herringbone Grooved Aerodynamic Journal Bearings
,”
Tribol. Online
,
3
(
7
), pp.
366
369
.
8.
Smalley
,
A. J.
,
Darlow
,
M. S.
, and
Mehta
,
R. K.
,
1978
, “
The Dynamic Characteristics of O-Rings
,”
ASME J. Mech. Des.
,
100
(
1
), pp.
132
138
.
9.
Darlow
,
M.
, and
Zorzi
,
E.
,
1981
, “
Mechanical Design Handbook for Elastomers
,” National Aeronautics and Space Administration, Washington, DC, Report No. NASA-CR-3423.
10.
Al-bender
,
F.
,
Colombo
,
F.
,
Reynaerts
,
D.
,
Villavicencio
,
R.
, and
Waumans
,
T.
,
2017
, “
Dynamic Characterization of Rubber O-Rings: Squeeze and Size Effects
,”
Adv. Trib.
,
2017
, p.
2509879
.
11.
Smyth
,
P. A.
,
Varney
,
P. A.
, and
Green
,
I.
,
2016
, “
A Fractional Calculus Model of Viscoelastic Stator Supports Coupled With Elastic Rotor-Stator Rub
,”
ASME J. Tribol.
,
138
(
4
), p.
041101
.
12.
Green
,
I.
, and
Etsion
,
I.
,
1986
, “
Pressure and Squeeze Effects on the Dynamic Characteristics of Elastomer 0-Rings Under Small Reciprocating Motion
,”
ASME J. Tribol.
,
108
(
3
), pp.
439
444
.
13.
Bormann
,
A.
, and
Gasch
,
R.
,
2004
, “
Damping and Stiffness Coefficients of Elastomer Rings and Their Optimised Application in Rotor Dynamics: Theoretical Investigations and Experimental Validation
,”
Aust. J. Mech. Eng.
,
1
(
2
), pp.
91
100
.
14.
Green
,
I.
, and
English
,
C.
,
1992
, “
Analysis of Elastomeric O-Ring Seals in Compression Using the Finite Element Method
,”
Tribol. Trans.
,
35
(
1
), pp.
83
88
.
15.
Shoyama
,
T.
, and
Fujimoto
,
K.
,
2018
, “
Calculation of High-Frequency Dynamic Properties of Squeezed O-Ring for Bearing Support
,”
Mech. Eng. J.
,
5
(
2
), p.
17-00444
.
16.
Simo
,
J. C.
,
1987
, “
On a Fully Three-Dimensional Finite-Strain Viscoelastic Damage Model: Formulation and Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
60
(
2
), pp.
153
173
.
17.
Bergström
,
J. S.
, and
Boyce
,
M. C.
,
1998
, “
Constitutive Modeling of the Large Strain Time-Dependent Behavior of Elastomers
,”
J. Mech. Phys. Solids
,
46
(
5
), pp.
931
954
.
18.
Höfer
,
P.
, and
Lion
,
A.
,
2009
, “
Modelling of Frequency- and Amplitude-Dependent Material Properties of Filler-Reinforced Rubber
,”
J. Mech. Phys. Solids
,
57
(
3
), pp.
500
520
.
19.
Yang
,
L. M.
,
Shim
,
V. P. W.
, and
Lim
,
C. T.
,
2000
, “
A Visco-Hyperelastic Approach to Modelling the Constitutive Behaviour of Rubber
,”
Int. J. Impact Eng.
,
24
(
6–7
), pp.
545
560
.
20.
Shoyama
,
T.
, and
Fujimoto
,
K.
,
2018
, “
Direct Measurement of High-Frequency Viscoelastic Properties of Pre-Deformed Rubber
,”
Polym. Test.
,
67
, pp.
399
408
.
21.
Bonet
,
J.
, and
Wood
,
R. D.
,
2008
,
Nonlinear Continuum Mechanics for Finite Element Analysis
, Cambridge University Press, New York.
22.
Stein
,
E.
, and
Sagar
,
G.
,
2008
, “
Convergence Behavior of 3D Finite Elements for Neo-Hookean Material
,”
Eng. Comput.
,
25
(
3
), pp.
220
232
.
23.
Dassault Systèmes, 2014, “
1.1.15 Analysis of an Automotive Boot Seal
,”
ABAQUS 6.14 Example Problems Guide
, Dassault Systèmes, Vélizy-Villacoublay, France
24.
Ferry
,
J. D.
,
1980
,
Viscoelastic Properties of Polymers
,
Wiley
,
New York
.
You do not currently have access to this content.