Abstract

Belleville springs are widely used in a variety of mechanical systems. Recent advances in the field of multi-stable structures suggest that these conical axisymmetric washers may be extremely useful as bistable building blocks for multi-stable architected metamaterials. In this paper, we examine the ability of existing analytical models to accurately predict the bistable behavior of Belleville springs, namely, a nonmonotonous force–displacement relation with two branches of positive stiffness separated by a branch of negative stiffness. By comparing with results of finite element (FE) simulations, we find that current analytical models may suffer from significant inaccuracies associated with the assumption of rigid rotation. According to this assumption, adopted by all analytical models of Belleville springs, the cross section of the spring rotates without bending, i.e., maintains zero curvature as the spring deforms. Motivated by this insight, we relax the rigid-rotation assumption and approximate the radial displacement field by a linear relation in terms of the distance from the spring axis. We find, based on extensive finite element simulations, that the functional dependence of the radial displacement on the geometry of the springs is indifferent to the stage of deformation and can be expressed in terms of three geometrical parameters. These findings enable us to derive closed-form expressions that are simple and straightforward to use, yet are significantly more accurate than existing analytical models.

References

1.
Almen
,
J. O.
, and
Laszlo
,
A.
,
1936
, “
The Uniform-Section Disk Spring
,”
Trans. ASME
,
58
(
4
), pp.
305
314
.
2.
Hübner
,
W.
,
1984
, “Large Deformations of Elastic Conical Shells,”
Flexible Shells
, pp.
257
270
.
3.
Kobelev
,
V.
,
2016
, “
Exact Shell Solutions for Conical Springs
,”
Mech. Based Des. Struct. Mach.
,
44
(
4
), pp.
317
339
.
4.
La Rosa
,
G.
,
Messina
,
M.
, and
Risitano
,
A.
,
2001
, “
Stiffness of Variable Thickness Belleville Springs
,”
ASME J. Mech. Des.
,
123
(
2
), pp.
294
299
.
5.
Saini
,
P. K.
,
Kumar
,
P.
, and
Tandon
,
P.
,
2007
, “
Design and Analysis of Radially Tapered Disc Springs With Parabolically Varying Thickness
,”
Proc. Inst. Mech. Eng., Part C
,
221
(
2
), pp.
151
158
.
6.
Chaturvedi
,
R.
,
Trikha
,
M.
, and
Simha
,
K. R. Y.
,
2019
, “
Theoretical and Numerical Analysis of Stepped Disk Spring
,”
Thin-Walled Struct.
,
136
, pp.
162
174
.
7.
Schremmer
,
G.
,
Aug. 1973
, “
The Slotted Conical Disk Spring
,”
ASME J. Eng. Ind.
,
95
(
3
), pp.
765
770
.
8.
Curti
,
G.
, and
Montanini
,
R.
,
1999
, “
On the Influence of Friction in the Calculation of Conical Disk Springs
,”
ASME J. Mech. Des.
,
121
(
4
), pp.
622
627
.
9.
Ozaki
,
S.
,
Tsuda
,
K.
, and
Tominaga
,
J.
,
2012
, “
Analyses of Static and Dynamic Behavior of Coned Disk Springs: Effects of Friction Boundaries
,”
Thin-Walled Struct.
,
59
, pp.
132
143
.
10.
Curti
,
G.
, and
Raffa
,
F. A.
,
1992
, “
Material Nonlinearity Effects in the Stress Analysis of Conical Disk Springs
,”
ASME J. Mech. Des.
,
114
(
2
), pp.
238
244
.
11.
Curti
,
G.
, and
Orlando
,
M.
,
1976
,
A New Calculation of Coned Annular Disk Spring.
12.
Bagavathiperumal
,
P.
,
Chandrasekaran
,
K.
, and
Manivasagam
,
S.
,
1991
, “
Elastic Load-Displacement Predictions for Coned Disc Springs Subjected to Axial Loading Using the Finite Element Method
,”
J. Strain Anal. Eng. Des.
,
26
(
3
), pp.
147
152
.
13.
Zheng
,
E.
,
Jia
,
F.
, and
Zhou
,
X.
,
2014
, “
Energy-Based Method for Nonlinear Characteristics Analysis of Belleville Springs
,”
Thin-Walled Struct.
,
79
, pp.
52
61
.
14.
Jabareen
,
M.
, and
Sheinman
,
I.
,
2006
, “
Postbuckling Analysis of Geometrically Imperfect Conical Shells
,”
J. Eng. Mech.
,
132
(
12
), pp.
1326
1334
.
15.
Adolf Schnorr GmnH
,
2003
,
Handbook of Disc Springs.
16.
Cohen
,
T.
, and
Givli
,
S.
,
2014
, “
Dynamics of a Discrete Chain of Bi-Stable Elements: A Biomimetic Shock Absorbing Mechanism
,”
J. Mech. Phys. Solids
,
64
, pp.
426
439
.
17.
Jin
,
L.
,
Khajehtourian
,
R.
,
Mueller
,
J.
,
Rafsanjani
,
A.
,
Tournat
,
V.
,
Bertoldi
,
K.
, and
Kochmann
,
D. M.
,
2020
, “
Guided Transition Waves in Multistable Mechanical Metamaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
,
117
(
5
), pp.
2319
2325
.
18.
Katz
,
S.
, and
Givli
,
S.
,
2019
, “
Solitary Waves in a Nonintegrable Chain Wth Double-Well Potentials
,”
Phys. Rev. E
,
100
(
3
), p.
032209
.
19.
Benichou
,
I.
, and
Givli
,
S.
,
2020
, “
Force-Sensitive Metamaterials for Vibration Mitigation and Mechanical Protection
,”
Extrem. Mech. Lett.
,
40
, p.
100932
.
20.
Khajehtourian
,
R.
, and
Kochmann
,
D. M.
,
2020
, “
Phase Transformations in Substrate-Free Dissipative Multistable Metamaterials
,”
Extrem. Mech. Lett.
,
37
, p.
100700
.
21.
Katz
,
S.
, and
Givli
,
S.
,
2020
, “
Boomerons in a 1-D Lattice With Only Nearest-Neighbor Interactions
,”
EPL
,
131
(
6
), p.
64002
.
22.
Haghpanah
,
B.
,
Salari-Sharif
,
L.
,
Pourrajab
,
P.
,
Hopkins
,
J.
, and
Valdevit
,
L.
,
2016
, “
Multistable Shape-Reconfigurable Architected Materials
,”
Adv. Mater.
,
28
(
36
), pp.
7915
7920
.
23.
Rafsanjani
,
A.
,
Akbarzadeh
,
A.
, and
Pasini
,
D.
,
2015
, “
Snapping Mechanical Metamaterials Under Tension
,”
Adv. Mater.
,
27
(
39
), pp.
5931
5935
.
24.
Benichou
,
I.
, and
Givli
,
S.
,
2013
, “
Structures Undergoing Discrete Phase Transformation
,”
J. Mech. Phys. Solids
,
61
(
1
), pp.
94
113
.
26.
Disc springs –Calculation
,
2016
, “
DIN EN 16984 (Formerly DIN 2092)
,” https://www.din.de/en
27.
LS-DYNA® Keyword User’s Manual
,”
2021
, Volume 1, Livermore Software Technology (LST), https://www.lstc.com/download/manuals
28.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
,
1957
,
Theory of Plate and Shell
, 2nd ed.,
New York
.
29.
Hanukah
,
E.
, and
Givli
,
S.
,
2016
, “
A New Approach to Reduce the Number of Integration Points in Mass-Matrix Computations
,”
Finite Elem. Anal. Des.
,
116
, pp.
21
31
.
30.
Hanukah
,
E.
, and
Givli
,
S.
,
2018
, “
Improving Mass Matrix and Inverse Mass Matrix Computations of Hexahedral Elements
,”
Finite Elem. Anal. Des.
,
144
, pp.
1
14
.
You do not currently have access to this content.