Bahgat, B. M., and Willmert, K. D., 1976, “Finite Element Vibration Analysis of Planar Mechanisms,” Mech. Mach. Theory

[CrossRef], 11 , pp. 47–71.

Midha, A., Erdman, A. G., and Frohib, D. A., 1978, “Finite Element Approach to Mathematical Modeling of High Speed Elastic Linkages,” Mech. Mach. Theory

[CrossRef], 13 , pp. 603–618.

Book, W. J., 1984, “Recursive Lagrangian Dynamics of Flexible Manipulator Arms,” Int. J. Robot. Res., 3 (3), pp. 87–101.

Hastings, G., and Book, W. J., 1987, “Linear Dynamic Model for Flexible Link Manipulator,” IEEE Control Syst. Mag., 7 (1), pp. 61–64.

Trucic, D. A., and Midha, A., 1984, “Generalized Equations of Motion for Dynamic Analysis of Elastic Mechanism,” J. Mech. Des., 106 , pp. 243–248.

Usoro, P. B., Nadira, R., and Mahil, S. S., 1986, “A Finite Element Lagrange Approach to Modeling Light Weight Flexible Manipulators,” ASME J. Dyn. Syst., Meas., Control, 108 , pp. 198–205.

Nagaraj, B. P., Nataraju, B. S., and Ghosal, A., 1997, “Dynamics of a Two-Link Flexible System Undergoing Locking: Mathematical Modeling and Comparisons With Experiments,” J. Sound Vib., 207 (4), pp. 567–589.

Theodore, R. J., and Ghosal, A., 1995, “Comparison of Assumed Mode and Finite Element Methods for Flexible Multi-Link Manipulators,” Int. J. Robot. Res., 14 (2), pp. 91–111.

Przemieniecki, J. S., 1968, "*Theory of Matrix Structural Analysis*", McGraw-Hill, New York.

Bakr, E. M., and Shabana, A. A., 1986, “Geometrically Non-Linear Analysis of Multi-Body Systems,” Comput. Struct.

[CrossRef], 23 (6), pp. 739–751.

Gordaninejad, F., Azhdari, A., and Chalhoub, N. G., 1989, “The Combined Effects of Geometric Non-Linearity and Shear Deformation on the Performance of a Revolute-Prismatic Flexible Composite-Material Robot Arm,” "*Proceedings of Fourth International Conference on CAD, CAM, Robotics and Factories of the Future*", Indian Institute of Technology, New Delhi, Dec. 19–22, Tata McGraw Hill, New Delhi, Vol. 1 , pp. 620–638.

Simo, J. C., and Vu-Quoc, L., 1987, “The Role of Nonlinear Theories in Transient Dynamic Analysis of Flexible Structures,” J. Sound Vib.

[CrossRef], 119 (3), pp. 487–508.

Damaren, C., and Sharf, L., 1995, “Simulation of Flexible-Link Manipulators With Inertia and Geometric Nonlinearities,” ASME J. Dyn. Syst., Meas., Control, 117 , pp. 74–87.

Mayo, J., Dominguez, J., and Shabana, A. A., 1995, “Geometrically Nonlinear Formulations of Beams in Flexible Multi-Body Dynamics,” ASME J. Vibr. Acoust., 117 , pp. 501–509.

Absy, H. E. L., and Shabana, A. A., 1997, “Geometric Stiffness and Stability of Rigid Body Modes,” J. Sound Vib., 207 (4), pp. 465–496.

Du, H., and Ling, S. F., 1995, “A Nonlinear Dynamic Model for Three-Dimensional Flexible Linkages,” Comput. Struct.

[CrossRef], 56 (1), pp. 15–23.

Al-Bedoor, B. O., and Hamdan, M. N., 2001, “Geometrically Non-linear Dynamic Model of a Rotating Flexible Arm,” J. Sound Vib., 240 (1), pp. 59–72.

Gurgoze, M., 1998, “On the Dynamic Analysis of a Flexible L-Shaped Structure,” J. Sound Vib., 211 (4), pp. 683–688.

Oguamanam, D. C. D., Hansen, J. S., and Heppler, G. R., 1998, “Vibration of Arbitrarily Oriented Two-Member Open Frames With Tip Mass,” J. Sound Vib., 209 (4), pp. 651–669.

Milford, R. I., and Ashokanthan, S. F., 1999, “Configuration Dependent Eigenfrequencies for a Two-Link Flexible Manipulator: Experimental Verification,” J. Sound Vib.

[CrossRef], 222 (2), pp. 191–207.

Reddy, B. S., Simha, K. R. Y., and Ghosal, A., 1999, “Free Vibration of a Kinked Cantilever With Attached Masses,” J. Acoust. Soc. Am.

[CrossRef], 105 (1), pp. 164–174.

Agrawal, O. P., and Shabana, A. A., 1985, “Dynamic Analysis of Multi-Body Systems Using Component Modes,” Comput. Struct.

[CrossRef], 21 (6), pp. 1303–1312.

Witham, G. B., 1986, "*Linear and Nonlinear Waves*", Wiley, New York.

"*Matlab Users Manual*", 1994, The MathWorks Inc., Natick, Massachusetts.

Wolfram, S., 1996, "*The Mathematica Book*", 3rd ed., Cambridge University Press, Cambridge, England.