Belytschko, T., Liu, W. K., and Moran, B., 2000, "*Nonlinear Finite Elements for Continua and Structures*", Wiley, New York.

Zienkiewicz, O. C., 1977, "*The Finite Element Method*", 3rd ed., McGraw-Hill, New York.

Zienkiewicz, O. C., and Taylor, R. L., 2000, "*Solid Mechanics*", (The Finite Element Method Vol. 2 ) 5th ed., Butterworth-Heinemann, London.

Tseng, F. C., and Hulbert, G. M., 2001, “A Gluing Algorithm for Network-Distributed Dynamics Simulation,” Multibody Syst. Dyn.

[CrossRef], 6 , pp. 377–396.

Wang, J. Z., Ma, Z. D., and Hulbert, G. M., 2003, “A Gluing Algorithm for Distributed Simulation of Multibody Systems,” Nonlinear Dyn.

[CrossRef], 34 , pp. 159–188.

Bauchau, O. A., 1998, “Computational Schemes for Flexible, Nonlinear Multi-Body Systems,” Multibody Syst. Dyn.

[CrossRef], 2 (2), pp. 169–225.

Géradin, M., and Cardona, A., 2001, "*Flexible Multibody Dynamics: A Finite Element Approach*", Wiley, New York.

Shabana, A., 1996, “Finite Element Incremental Approach and Exact Rigid Body Inertia,” ASME J. Mech. Des., 118 (2), pp. 171–178.

Bayo, E., García de Jalón, J., and Serna, M. A., 1988, “A Modified Lagrangian Formulation for the Dynamic Analysis of Constrained Mechanical Systems,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 71 , pp. 183–195.

Bayo, E., and Ledesma, R., 1996, “Augmented Lagrangian and Mass-Orthogonal Projection Methods for Constrained Multibody Dynamics,” Nonlinear Dyn.

[CrossRef], 9 , pp. 113–130.

Simo, J. C., and Vu-Quoc, L., 1986, “On the Dynamics of Flexible Beams Under Large Overall Motions—The Plane Case: Parts I and II,” ASME J. Appl. Mech., 53 , pp. 849–863.

Wehage, R. A., 1980, “Generalized Coordinate Partitioning in Dynamic Analysis of Mechanical Systems,” Ph.D. thesis, University of Iowa, Iowa.

Wehage, R. A., and Haug, E. J., 1982, “Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems,” ASME J. Mech. Des., 104 (1), pp. 247–255.

Shabana, A. A., 2005, "*Dynamics of Multibody Systems*", 3rd ed., Cambridge University Press, Cambridge, England.

Agrawal, O. P., and Shabana, A. A., 1985, “Dynamic Analysis of Multi-Body Systems Using Component Modes,” Comput. Struct.

[CrossRef], 21 (6), pp. 1303–1312.

Farhat, C. H., and Wilson, E., 1988, “A Parallel Active Column Equation Solver,” Comput. Struct.

[CrossRef], 28 , pp. 289–304.

Farhat, C. H., and Roux, F. X., 1994, “Implicit Parallel Processing in Structural Mechanics,” Comput. Mech. Adv.

[CrossRef], 2 , pp. 1–124.

Farhat, C., and Roux, F. X., 1991, “A Method of Finite Element Tearing and Interconnecting and its Parallel Solution Algorithm,” Int. J. Numer. Methods Eng.

[CrossRef], 32 , pp. 1205–1227.

Modak, S., and Sotelino, E. D., 2000, “Iterative Group Implicit Algorithm for Parallel Transient Finite Element Analysis,” Int. J. Numer. Methods Eng.

[CrossRef], 47 (4), pp. 869–885.

Kim, S. S., 2002, “A Subsystem Synthesis Method for an Efficient Vehicle Multibody Dynamics,” Multibody Syst. Dyn.

[CrossRef], 7 , pp. 189–207.

Anderson, K. S., and Duan, S., 2000, “Highly Parallelizable Low-Order Dynamics Simulation Algorithm for Multi-Rigid-Body Systems,” J. Guid. Control Dyn., 23 (2), pp. 355–364.

Kübler, R., and Schiehlen, W., 2000, “Modular Simulation in Multibody System Dynamics,” Multibody Syst. Dyn.

[CrossRef], 4 , pp. 107–127.

Tseng, F. C., Ma, Z. D., and Hulbert, G. M., 2003, “Efficient Numerical Solution of Constrained Multibody Dynamics Systems,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 192 , pp. 439–472.

Bonet, J., and Wood, R. D., 1997, "*Nonlinear Continuum Mechanics for Finite Element Analysis*", Cambridge University Press, Cambridge, England.

Spencer, A. J. M., 1980, "*Continuum Mechanics*", Longman, London.

Naghdi, P. M., 1972, “The Theory of Shells and Plates,” "*Handbuch der Physik*", Springer-Verlag, Berlin, Vol. 6 , pp. 425–640.

Cesnik, C. E. S., Hodges, D. H., and Sutyrin, V. G., 1996, “Cross-Sectional Analysis of Composite Beams Including Large Initial Twist and Curvature Effects,” AIAA J., 34 (9), pp. 1913–1920.

Stolarski, H., Belytschko, T., and Lee, S. H., 1995, “A Review of Shell Finite Elements and Corotational Theories,” Comput. Mech. Adv., 2 (2), pp. 125–212.

Kratzig, W. B., 1993, “‘Best’ Transverse Shearing and Stretching Shell Theory for Nonlinear Finite Element Simulations,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 103 (1–2), pp. 135–160.

Goldenweizer, A., 1961, "*Theory of Thin Elastic Shells*", Pergamon, Oxford, UK.

Libai, A., and Simmonds, J. G., 1998, "*The Nonlinear Theory of Elastic Shells*", 2nd ed., Cambridge University Press, Cambridge, England.

Bathe, K. J., 1996, "*Finite Element Procedures*", Prentice-Hall, Englewood Cliffs, NJ.

Nikravesh, P. E., Wehage, R. A., and Kwon, O. K., 1985, “Euler Parameters in Computational Dynamics and Kinematics. Part I and Part II,” ASME J. Mech., Transm., Autom. Des., 107 (3), pp. 358–369.

García de Jalón, J., Unda, J., Avello, A., and Jiménez, J. M., 1987, “Dynamic Analysis of Three-Dimensional Mechanisms in “Natural” Coordinates,” ASME J. Mech., Transm., Autom. Des., 109 , pp. 460–465.

Betsch, P., and Steinmann, E., 2001, “Constrained Integration of Rigid Body Dynamics,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 191 , pp. 467–488.

Cardona, A., and Géradin, M., 1988, “A Beam Finite Element Non-Linear Theory With Finite Rotation,” Int. J. Numer. Methods Eng.

[CrossRef], 26 , pp. 2403–2438.

Betsch, P., Menzel, A., and Stein, E., 1998, “On the Parametrization of Finite Rotations in Computational Mechanics. A Classification of Concepts With Application to Smooth Shells,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 155 (3–4), pp. 273–305.

Kurdila, A., Papastavridis, J. G., and Kamat, M. P., 1990, “Role of Maggi’s Equations in Computational Methods for Constrained Multibody Systems,” J. Guid. Control Dyn., 13 (1), pp. 113–120.

Unda, J., García de Jalón, J., Losantos, F., and Enparantza, R., 1987, “A Comparative Study on Some Different Formulations of the Dynamics Equations of Constrained Mechanical Systems,” ASME J. Mech., Transm., Autom. Des., 109 , pp. 466–474.

Hilber, H. M., Hughes, T. J. R., and Taylor, R. L., 1977, “Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics,” Earthquake Eng. Struct. Dyn.

[CrossRef], 5 , pp. 282–292.

Chung, J., and Hulbert, G. M., 1993, “A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method,” ASME J. Appl. Mech., 60 , pp. 371–375.

Cardona, A., and Géradin, M., 1989, “Time Integration of the Equations of Motion in Mechanism Analysis,” Comput. Struct.

[CrossRef], 33 (3), pp. 801–820.

Farhat, C., Crivelli, L., and Géradin, M., 1995, “Implicit Time Integration of a Class of Constrained Hybrid Formulations—Part I: Spectral Stability Theory,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 125 , pp. 71–107.

Hulbert, G. M., 2004, “Computational Structural Dynamics,” in "*Encyclopedia of Computational Mechanics*", E.Stein, R.de Borst, and T.J. R.Hughes, eds., Vol. 2 , pp. 169–193.

Bauchau, O. A., Damilano, G., and Theron, N. J., 1995, “Numerical Integration of Nonlinear Elastic Multi-Body Systems,” Int. J. Numer. Methods Eng.

[CrossRef], 38 , pp. 2727–2751.

Bottasso, C. L., and Borri, M., 1997, “Energy Preserving∕Decaying Schemes for Non-Linear Beam Dynamics Using the Helicoidal Approximation,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 143 , pp. 393–415.

Simo, J. C., and Tarnow, N., 1994, “A New Energy and Momentum Conserving Algorithm for the Nonlinear Dynamics of Shells,” Int. J. Numer. Methods Eng.

[CrossRef], 37 , pp. 2527–2549.

Bauchau, O. A., Choi, J. Y., and Bottasso, C. L., 2002, “On the Modeling of Shells in Multibody Dynamics,” Multibody Syst. Dyn.

[CrossRef], 8 (4), pp. 459–489.

Bottasso, C. L., Borri, M., and Trainelli, L., 2001, “Integration of Elastic Multibody Systems by Invariant Conserving∕Dissipating Algorithms—Part I: Formulation,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 190 , pp. 3669–3699.

Bottasso, C. L., Borri, M., and Trainelli, L., 2001, “Integration of Elastic Multibody Systems by Invariant Conserving∕Dissipating Algorithms—Part II: Numerical Schemes and Applications,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 190 , pp. 3701–3733.

Bauchau, O. A., Bottasso, C. L., and Trainelli, L., 2003, “Robust Integration Schemes for Flexible Multibody Systems,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 192 (3–4), pp. 395–420.

Cardona, A., and Géradin, M., 1990, “Modeling of a Hydraulic Actuator in Flexible Machine Dynamics Simulation,” Mech. Mach. Theory

[CrossRef], 25 (2), pp. 193–207.

Cardona, A., Géradin, M., and Doan, D. B., 1991, “Rigid and Flexible Joint Modelling in Multi-Body Dynamics Using Finite Elements,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 89 , pp. 395–418.

Bauchau, O. A., and Rodriguez, L., 2002, “Modeling of Joints With Clearance in Flexible Multibody Systems,” Int. J. Solids Struct.

[CrossRef], 39 , pp. 41–63.

Cardona, A., and Géradin, M., 1992, “A Superelement Formulation for Mechanism Analysis,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 100 , pp. 1–29.

Bauchau, O. A., and Hodges, D. H., 1999, “Analysis of Nonlinear Multi-Body Systems With Elastic Couplings,” Multibody Syst. Dyn., 3 , pp. 168–188.

Bauchau, O. A., 1999, “On the Modeling of Friction and Rolling in Flexible Multi-Body Systems,” Multibody Syst. Dyn.

[CrossRef], 3 , pp. 209–239.

Dmitrochenko, O. N., and Pogorelov, D. Y., 2003, “Generalization of Plate Finite Elements for Absolute Nodal Coordinate Formulation,” Multibody Syst. Dyn.

[CrossRef], 10 (1), pp. 17–43.

Garcia-Vallejo, D., Escalona, J. L., Mayo, J., and Dominguez, J., 2003, “Describing Rigid-Flexible Multibody Systems Using Absolute Coordinates,” Nonlinear Dyn.

[CrossRef], 34 (1–2), pp. 75–94.

Garcia-Vallejo, D., Valverde, J., and Dominguez, J., 2005, “An Internal Damping Model for the Absolute Nodal Coordinate Formulation,” Nonlinear Dyn.

[CrossRef], 42 (4), pp. 347–369.

Gerstmayr, J., and Shabana, A. A., 2006, “Analysis of Thin Beams and Cables Using the Absolute Nodal Coordinate Formulation,” Nonlinear Dyn.

[CrossRef], 45 , pp. 109–130.

Mikkola, M. A., and Matikainen, M. K., 2006, “Development of Elastic Forces for a Large Deformation Plate Element Based on the Absolute Nodal Coordinate Formulation,” ASME J. Comput. Nonlinear Dyn.

[CrossRef], 1 (2), pp. 103–108.

Schwab, A. L., and Meijaard, J. P., 2005, “Comparison of Three-Dimensional Beam Elements for Dynamic Analysis: Finite Element Method and Absolute Nodal Coordinate Formulation,” "*Proceedings of the ASME 2005 International Design Engineering Technical Conferences and Computer and Information in Engineering Conference*" (DETC2005-85104), Long Beach, CA, Sept. 24–28, Paper. No. DETC2005-85104.

Sopanen, J. T., and Mikkola, A. M., 2003, “Description of Elastic Forces in Absolute Nodal Coordinate Formulation,” Nonlinear Dyn.

[CrossRef], 34 (1–2), pp. 53–74.

Takahashi, Y., and Shimizu, N., 1999, “Study on Elastic Forces of the Absolute Nodal Coordinate Formulation for Deformable Beams,” "*Proceedings of ASME International Design Engineering Technical Conferences and Computer and Information in Engineering Conference*", Las Vegas, NV.

Von Dombrowski, S., 2002, “Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates,” Multibody Syst. Dyn.

[CrossRef], 8 (4), pp. 409–432.

Yoo, W. S., Lee, J. H., Park, S. J., Sohn, J. H., Pogorelov, D., and Dimitrochenko, O., 2004, “Large Deflection Analysis of a Thin Plate: Computer Simulation and Experiment,” Multibody Syst. Dyn.

[CrossRef], 11 (2), pp. 185–208.

Shabana, A. A., 1998, “A Computer Implementation of the Absolute Nodal Coordinate Formulation for Flexible Multibody Dynamics,” Nonlinear Dyn.

[CrossRef], 16 (3), pp. 293–306.

Sugiyama, H., Mikkola, A. M., and Shabana, A. A., 2003, “A Non-Incremental Nonlinear Finite Element Solution for Cable Problems,” ASME J. Mech. Des.

[CrossRef], 125 , pp. 746–756.

Romero, I., 2006, “A Study of Nonlinear Rod Models for Flexible Multibody Dynamics,” "*Proceedings of the Seventh World Congress on Computational Mechanics*", Los Angeles, CA, July 16–22.

Huston, R. L., 1981, “Multibody Dynamics Including the Effect of Flexibility and Compliance,” Comput. Struct.

[CrossRef], 14 , pp. 443–451.