Haug, E. J., 1989, "*Computer-Aided Kinematics and Dynamics of Mechanical Systems*", Vol. I , Prentice-Hall, Englewood Cliffs, NJ.

Shabana, A. A., 2005, "*Dynamics of Multibody Systems*", 3rd ed., Cambridge University Press, Cambridge.

Abraham, R., and Marsden, J. E., 1985, "*Foundations of Mechanics*", Addison-Wesley, Reading, MA.

Arnold, V., 1989, "*Mathematical Methods of Classical Mechanics*", Springer, New York.

Brenan, K. E., Campbell, S. L., and Petzold, L. R., 1989, "*Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations*", North-Holland, New York.

Lubich, C., and Hairer, E., 1989, “Automatic Integration of the Euler–Lagrange Equations With Constraints,” J. Comput. Appl. Math.

[CrossRef], 12 , pp. 77–90.

Hairer, E., and Wanner, G., 1991, "*Solving Ordinary Differential Equations*", Vol. II (Computational Mathematics ) Springer-Verlag, Berlin.

Gear, C. W., 1971, "*Numerical Initial Value Problems of Ordinary Differential Equations*", Prentice-Hall, Englewood Cliffs, NJ.

Bauchau, O., and Laulusa, A., 2008, “Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems,” ASME J. Comput. Nonlinear Dyn.

[CrossRef], 3 , pp. 011005.

Potra, F., and Rheinboldt, W. C., 1991. “On the Numerical Solution of Euler–Lagrange Equations,” Mech. Struct. Mach., 19 (1), pp. 1–18.

Rheinboldt, W. C., 1984, “Differential-Algebraic Systems as Differential Equations on Manifolds,” Math. Comput., 43 , pp. 473–482.

Wehage, R. A., and Haug, E. J., 1982, “Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems,” ASME J. Mech. Des., 104 , pp. 247–255.

Liang, C. D., and Lance, G. M., 1987, “A Differentiable Null-Space Method for Constrained Dynamic Analysis,” ASME J. Mech., Transm., Autom. Des., 109 , pp. 405–410.

Yen, J., 1993, “Constrained Equations of Motion in Multibody Dynamics as ODEs on Manifolds,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.

[CrossRef], 30 (2), pp. 553–558.

Alishenas, T., 1992, “Zur numerischen behandlungen, stabilisierung durch projection und modellierung mechanischer systeme mit nebenbedingungen und invarianten,” Ph.D. thesis, Royal Institute of Technology, Stockholm.

Mani, N., Haug, E., and Atkinson, K., 1985, “Singular Value Decomposition for Analysis of Mechanical System Dynamics,” ASME J. Mech., Transm., Autom. Des., 107 , pp. 82–87.

Haug, E. J., Negrut, D., and Iancu, M., 1997, “A State-Space Based Implicit Integration Algorithm for Differential-Algebraic Equations of Multibody Dynamics,” Mech. Struct. Mach., 25 (3), pp. 311–334.

Negrut, D., Haug, E. J., and German, H. C., 2003, “An Implicit Runge–Kutta method for Integration of Differential-Algebraic Equations of Multibody Dynamics,” Multibody Syst. Dyn.

[CrossRef], 9 (2), pp. 121–142.

Orlandea, N., Chace, M. A., and Calahan, D. A., 1977, “A Sparsity-Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems—Part I and Part II,” ASME J. Eng. Ind., 99 , pp. 773–784.

Gear, C. W., Gupta, G., and Leimkuhler, B., 1985, “Automatic Integration of the Euler–Lagrange Equations With Constraints,” J. Comput. Appl. Math., 12–13 , pp. 77–90.

Fuhrer, C., and Leimkuhler, B. J., 1991, “Numerical Solution of Differential-Algebraic Equations for Constrained Mechanical Motion,” Numer. Math.

[CrossRef], 59 (1), pp. 55–69.

Ascher, U. M., and Petzold, L. R., 1993, “Stability of Computational Methods for Constrained Dynamics Systems,” SIAM J. Sci. Comput. (USA)

[CrossRef], 14 (1), pp. 95–120.

Ascher, U. M., Chin, H., and Reich, S., 1994, “Stabilization of DAEs and Invariant Manifolds,” Numer. Math.

[CrossRef], 67 (2) pp. 131–149.

Ascher, U. M., Chin, H., Petzold, L., and Reich, S., 1995, “Stabilization of Constrained Mechanical Systems With DAEs and Invariant Manifolds,” Mech. Struct. Mach., 23 (2), pp. 135–157.

Lubich, C., Engstler, C., Nowak, U., and Pohle, U., 1995, “MEXX—Numerical Software for the Integration of Constrained Mechanical Multibody Systems,” Mech. Based Des. Struct. Mach., 23 , pp. 473–495.

Bauchau, O. A., Bottasso, C. L., and Trainelli, L., 2003, “Robust Integration Schemes for Flexible Multibody Systems,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 192 , pp. 395–420.

Hughes, T. J. R., 1987, "*Finite Element Method: Linear Static and Dynamic Finite Element Analysis*", Prentice-Hall, Englewood Cliffs, NJ.

Geradin, M., and Rixen, D., 1994, "*Mechanical Vibrations: Theory and Application to Structural Dynamics*", Wiley, New York.

Hilber, H. M., Hughes, T. J. R., and Taylor, R. L., 1977, “Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics,” Earthquake Eng. Struct. Dyn.

[CrossRef], 5 , pp. 283–292.

Chung, J., and Hulbert, G. M., 1993, “A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method,” Trans. ASME, J. Appl. Mech.

[CrossRef], 60 (2), pp. 371–375.

Cardona, A., and Geradin, M., 1989, “Time Integration of the Equation of Motion in Mechanical Analysis,” Comput. Struct.

[CrossRef], 33 , pp. 801–820.

Yen, J., Petzold, L., and Raha, S., 1998, “A Time Integration Algorithm for Flexible Mechanism Dynamics: The DAE α-Method,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 158 , pp. 341–355.

Negrut, D., Rampalli, R., Ottarsson, G., and Sajdak, A., 2007, “On the Use of the HHT Method in the Context of Index 3 Differential Algebraic Equations of Multibody Dynamics,” ASME J. Comput. Nonlinear Dyn.

[CrossRef], 2 (1), pp. 73–85.

Arnold, M., and Bruls, O., 2007, “Convergence of the Generalized-α Scheme for Constrained Mechanical Systems,” Martin Luther University, Technical Report No. 9-2007.

Lunk, C., and Simeon, B., 2006, “Solving Constrained Mechanical Systems by the Family of Newmark and α-Methods,” Z. Angew. Math. Mech.

[CrossRef], 86 , pp. 772–784.

Jay, L. O., and Negrut, D., 2007, “Extensions of the HHT-α Method to Differential-Algebraic Equations in Mechanics,” Electron. Trans. Numer. Anal., 26 , pp. 190–208.

Jay, L. O., and Negrut, D., 2008, “A Second Order Extension of the Generalized-α Method for Constrained Systems in Mechanics,” unpublished.

Bottasso, C. L., Bauchau, O. A., and Cardona, A., 2007, “Time-Step-Size-Independent Conditioning and Sensitivity to Perturbations in the Numerical Solution of Index Three Differential Algebraic Equations,” SIAM J. Sci. Comput. (USA), 3 , pp. 395–420.

Newmark, N. M., 1959, “A Method of Computation for Structural Dynamics,” J. Engrg. Mech. Div., 112 , pp. 67–94.

1990, "*Multibody Systems Handbook*", W.Schiehlen, ed., Springer, New York.

Hairer, E., and Wanner, G., 1996, "*Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems*", Springer, New York.

Khude, N., and Negrut, D., 2007, “A MATLAB Implementation of the Seven-Body Mechanism for Implicit Integration of the Constrained Equations of Motion,” Simulation-Based Engineering Laboratory, The University of Wisconsin-Madison, Technical Report No. TR-2007-07.

Lötstedt, C., and Petzold, L., 1986, “Numerical Solution of Nonlinear Differential Equations With Algebraic Constraints I: Convergence Results for Backward Differentiation Formulas,” Math. Comput., 174 , pp. 491–516.

Brenan, K., and Engquist, B. E., 1988, “Backward Differentiation Approximations of Nonlinear Differential/Algebraic Systems,” Math. Comput.

[CrossRef], 51 (184), pp. 659–676.

Negrut, D., Jay, L., Khude, N., and Heyn, T., 2007, “A Discussion of Low-Order Integration Formulas for Rigid and Flexible Multibody Dynamics,” Proceedings of the Multibody Dynamics ECCOMAS Thematic Conference .

Schafer, N., Negrut, D., and Serban, R., 2008, “Experiments to Compare Implicit and Explicit Methods of Integration in Molecular Dynamics Simulation,” Simulation-Based Engineering Laboratory, The University of Wisconsin-Madison, Technical Report No. TR-2008-01.

Khude, N., Jay, L. O., and Negrut, D., 2008, “A Comparison of Low Order Numerical Integration Formulas for Rigid and Flexible Multibody Dynamics,” Simulation-Based Engineering Laboratory, The University of Wisconsin-Madison, Technical Report No. TR-2008-02.