Mainardi, F., 1996, “The Fundamental Solutions for the Fractional Diffusion-Wave Equation,” Appl. Math. Lett., 9 , pp. 23–28.

[CrossRef]Wyss, W., 1986, “The Fractional Diffusion Equation,” J. Math. Phys., 27 , pp. 2782–2785.

[CrossRef]Agrawal, O. P., 2002, “Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain,” Nonlinear Dyn., 29 , pp. 145–155.

[CrossRef]Heymans, N., and Podlubny, I., 2006, “Physical Interpretation of Initial Conditions for Fractional Differential Equations With Riemann-Liouville Fractional Derivatives,” Rheol Acta, 45 , pp. 765–771.

[CrossRef]Hilfer, R., 2000, “Fractional Diffusion Based on Riemann-Liouville Fractional Derivatives,” J. Phys. Chem. B, 104 , pp. 3914–3917.

[CrossRef]Kilbas, A. A., Trujillo, J. J., and Voroshilov, A. A., 2005, “Cauchy-Type Problem for Diffusion-Wave Equation With the Riemann-Liouville Partial Derivative,” Fractional Calculus Appl. Anal., 8 , pp. 403–430.

Özdemir, N., Agrawal, O. P., Karadeniz, D., and İskender, B. B., 2008, “Axis-Symmetric Fractional Diffusion-Wave Problem Part I—Analysis,” ENOC-2008 , Saint Petersburg, Russia.

Özdemir, N., and Karadeniz, D., 2008, “Fractional Diffusion-Wave Problem in Cylindrical Coordinates,” Phys. Lett. A, 372 , pp. 5968–5972.

[CrossRef]Povstenko, Y. Z., 2008, “Time Fractional Radial Diffusion in a Sphere,” Nonlinear Dyn., 53 , pp. 55–65.

[CrossRef]Oustaloup, A., 1995, "*La Derivation Non Enteire*", Hermes, Paris.

Podlubny, I., 1994, “Fractional-Order Systems and Fractional Order Controllers,” Institute of Experimental Physics, Slovak Academy of Sciences, Kosice.

Podlubny, I., Dorcak, L., and Kostial, I., 1997, “On Fractional Derivatives, Fractional-Order Dynamic Systems and -Controllers,” "*Proceedings of the 36th Conference on Decision & Control*", San Diego, CA.

Zhao, C., Xue, D., and Chen, Y. Q., 2005, “A Fractional Order PIDTuning Algorithm for a Class of Fractional Order Plants,” "*Proceedings of the IEEE International Conference on Mechatronics & Automation*", Niagara Falls, Canada, pp. 216–221.

Maione, G., and Lino, P., 2007, “New Tuning Rules for Fractional PIα Controllers,” Nonlinear Dyn., 49 , pp. 251–257.

[CrossRef]Barbosa, R. S., Silva, M. F., and Machado, J. A. T., 2008, “Tuning and Application of Integer and Fractional Order PIDControllers,” "*Intelligent Engineering Systems and Computational Cybernetics*", Springer, The Netherlands, pp. 245–255.

Jesus, I., and Machado, J. T., 2007, “Application of Fractional Calculus in the Control of Heat Systems,” Journal of Advanced Computational Intelligence and Intelligent Informatics, Fuji Technology Press, 11 , pp. 1086–1091.

Jesus, I., Machado, J. T., and Barbosa, R. S., 2008, “On the Fractional Order Control of Heat Systems,” "*Intelligent Engineering Systems and Computational Cybernetics-IESCC*", Springer, Netherlands, pp. 375–385.

Agrawal, O. P., 2004, “A General Formulation and Solution Scheme for Fractional Optimal Control Problems,” Nonlinear Dyn., 38 , pp. 323–337.

[CrossRef]Agrawal, O. P., 2007, “Fractional Optimal Control of a Distributed System Using Eigenfunctions,” "*Proceedings of the ASME 2007 International Design Engineering Technical Conferences*", Las Vegas, NV.

Özdemir, N., Agrawal, O. P., İskender, B. B., and Karadeniz, D., 2009, “Fractional Optimal Control of a 2-Dimensional Distributed System Using Eigenfunctions,” Nonlinear Dyn., 55 , pp. 251–260.

[CrossRef]Özdemir, N., Karadeniz, D., and İskender, B. B., 2009, “Fractional Optimal Control Problem of a Distributed System in Cylindrical Coordinates,” Phys. Lett. A, 373 , pp. 221–226.

[CrossRef]Barbosa, R. S., Machado, J. A. T., and Galhano, A. M., 2007, “Performance of Fractional PID Algorithms Controlling Nonlinear Systems With Saturation and Backlash Phenomena,” J. Vibr. Control, 13 (9–10), pp. 1407–1418.

[CrossRef]Özdemir, N., and İskender, B. B., 2008, “Fractional PIλController for Fractional Order Linear System With Input Hysteresis,” ENOC-2008 , Saint Petersburg, Russia.

Tao, G., and Kokotovic, P. V., 1994, “Discrete-Time Adaptive Control of Systems With Unknown Output Hysteresis,” "*Proceedings of the American Control Conference*". Baltimore, MD.

Sain, P. M., Sain, M. K., and Spencer, B. F., 1997, “Models for Hysteresis and Applications to Structural Control,” "*Proceedings of the American Control Conference*", Vol. 1 , pp. 16–20.

Logemann, H., and Mawby, A. D., 1998, “Integral Control of Distributed Parameter Systems With Input Relay Hysteresis,” UKACC International Conference on Control ‘98 , University of Wales, Swansea, United Kingdom.

Bagley, R. L., and Torvik, P. J., 1986, “On the Fractional Calculus Model of Viscoelastic Behavior,” J. Rheol., 30 , pp. 133–155.

[CrossRef]Padovan, J., and Sawicki, J. T., 1997, “Diophantine Type Fractional Derivative Representation of Structural Hysteresis,” Comput. Mech., 19 , pp. 335–340.

[CrossRef]Darwish, M. A., and El-Bary, A. A., 2006, “Existence of Fractional Integral Equation With Hysteresis,” Appl. Math. Comput., 176 , pp. 684–687.

[CrossRef]Schafer, I., and Kruger, K., 2006, “Modeling of Coils Using Fractional Derivatives,” J. Magn. Magn. Mater., 307 , pp. 91–98.

[CrossRef]Deng, W., and Lü, J., 2007, “Generating Multi-Directional Multi-Scroll Chaotic Attractors Via a Fractional Differential Hysteresis System,” Phys. Lett. A, 369 , pp. 438–443.

[CrossRef]Oldham, K. B., and Spanier, J., 1974, "*The Fractional Calculus*", Academic, New York.

Miller, K. S., and Ross, B., 1993, "*An Introduction to the Fractional Calculus and Fractional Differential Equations*", Wiley, New York.

Podlubny, I., 1999, "*Fractional Differential Equations*", Academic, San Diego.

Krasnosel’skii, M. A., and Pokrovskii, A. V., 1989, "*Systems With Hysteresis*", Springer, New York.

Mayergoyz, I. D., 1991, "*Mathematical Models of Hysteresis*", Springer-Verlag, Berlin.

Macki, J. W., Nistri, P., and Zecca, P., 1993, “Mathematical Models of Hysteresis,” SIAM Rev., 35 , pp. 94–123.

[CrossRef]Visintin, A., 1994, "*Differential Models of Hysteresis*", Springer, Berlin.

Coleman, B. D., and Hodgdon, M. L., 1986, “A Constitutive Relation for Rate-Independent Hysteresis in Ferromagnetically Soft Materials,” Int. J. Eng. Sci., 24 , pp. 897–919.

[CrossRef]Coleman, B. D., and Hodgdon, M. L., 1987, “On a Class of Constitutive Relations for Ferromagnetic Hysteresis,” Arch. Ration. Mech. Anal., 99 , pp. 375–396.

[CrossRef]Moradi, M. H., and Johnson, M. A., 2005, "*PID Control*", Springer-Verlag, London.