Radjai, F., Jean, M., Moreau, J. -J., and Roux, S., 1996, “Force Distributions in Dense Two-Dimensional Granular Systems,” Phys. Rev. Lett., 77 (2), pp. 274–277.

[CrossRef]Choi, J., Kudrolli, A., and Bazant, M. Z., 2005, “Velocity Profile of Granular Flows in Silos and Hoppers,” J. Phys.: Condens. Matter, 17 , pp. S2533–S2548.

[CrossRef]Kamrin, K., and Bazant, M. Z., 2007, “Stochastic Flow Rule for Granular Materials,” Phys. Rev. E, 75 , p. 041301.

[CrossRef]Kamrin, K., Rycroft, C. H., and Bazant, M. Z., 2007, “The Stochastic Flow Rule: A Multi-Scale Model for Granular Plasticity,” Model. Simul. Mater. Sci. Eng., 15 , pp. S449–S464.

[CrossRef]Cundall, P., and Strack, O., 1979, “A Discrete Numerical Model for Granular Assemblies,” Geotechnique, 29 (1), pp. 47–65.

[CrossRef]Hirshfeld, D., and Rapaporta, D., 2001, “Granular Flow From a Silo: Discrete-Particle Simulations in Three Dimensions,” Eur. Phys. J. E, 4 , pp. 193–199.

[CrossRef]Rycroft, C. H., Grest, G. S., Landry, J. W., and Bazant, M. Z., 2006, “Analysis of Granular Flow in a Pebble-Bed Nuclear Reactor,” Phys. Rev. E, 74 , p. 021306.

[CrossRef]Madsen, J., Pechdimaljian, N., and Negrut, D., 2007, “Penalty Versus Complementarity-Based Frictional Contact of Rigid Bodies: A CPU Time Comparison,” Technical Report No. TR-2007-05, Simulation-Based Engineering Lab, University of Wisconsin, Madison.

Pang, J. -S., and Stewart, D., 2008, “Differential Variational Inequalities,” Math. Program., 113 (2), pp. 345–424.

[CrossRef]Moreau, J. J., 1988, “Unilateral Contact and Dry Friction in Finite Freedom Dynamics,” "*Nonsmooth Mechanics and Applications*", J.J.Moreau and P.D.Panagiotopoulos, eds., Springer-Verlag, Berlin, pp. 1–82.

Moreau, J. J., and Jean, M., 1996, “Numerical Treatment of Contact and Friction: The Contact Dynamics Method,” Proceedings of the Third Biennial Joint Conference on Engineering Systems and Analysis , Montpellier, France, pp. 201–208.

Jourdan, F., Alart, P., and Jean, M., 1998, “A Gauss Seidel Like Algorithm to Solve Frictional Contract Problems,” Comput. Methods Appl. Mech. Eng., 155 , pp. 31–47.

[CrossRef]Cottle, R. W., Pang, J. -S., and Stone, R. E., 1992, "*The Linear Complementarity Problem*", Academic, New York.

Murty, K. G., 1988, "*Linear Complementarity, Linear and Nonlinear Programming*", Helderman Verlag, Berlin.

Tasora, A., and Anitescu, M., 2007, “A Fast Contraction Mapping for Solving Multibody Systems,” PAMM, 7 , p. 1062401.

[CrossRef]Anitescu, M., and Tasora, A., 2008, “An Iterative Approach for Cone Complementarity Problems for Nonsmooth Dynamics,” Comput. Optim. Appl. in press.

[CrossRef]Mangasarian, O., 1977, “Solution of Symmetric Linear Complementarity Problems by Iterative Methods,” J. Optim. Theory Appl., 22 (4), pp. 465–485.

[CrossRef]Anitescu, M., 2006, “Optimization-Based Simulation of Nonsmooth Rigid Multibody Dynamics,” Math. Program., 105 (1), pp. 113–143.

[CrossRef]Stewart, D., 1997, “Existence of Solutions to Rigid Body Dynamics and the Painlevé Paradoxes,” C. R. Acad. Sci. Paris, 325 (6), pp. 689–693.

Anitescu, M., and Hart, G. D., 2004, “A Constraint-Stabilized Time-Stepping Approach for Rigid Multibody Dynamics With Joints, Contact and Friction,” Int. J. Numer. Methods Eng., 60 (14), pp. 2335–2371.

[CrossRef]Savage, S. B., 1979, “Gravity Flow of Cohesionless Granular Materials in Chutes and Channels,” J. Fluid Mech., 92 (01), pp. 53–96.

[CrossRef]Kadak, A., and Bazant, Z., 2004, “Pebble Flow Experiments for Pebble Bed Reactors,” Proceedings of Second International Topical Meeting on High Temperature Reactor Technology , Beijing, China.

Schultz, R. R., Ougouag, A. M., Nigg, D. W., Gougar, H. D., Johnson, R. W., Terry, W. K., Oh, C. H., McEligot, D. W., Johnsen, G. W., McCreery, G. E., Yoon, W. Y., Sterbentz, J. W., Herring, J. S., Taiwo, T. A., Wei, T. Y. C., Pointer, W. D., Yang, W. S., and Farmer, M. T., 2007, “Next Generation Nuclear Plant Methods Technical Program Plan,” Technical Report No. INL/EXT-06-11804, Idaho National Laboratory.

Rothwell, G., and Rust, J., 1997, “On the Optimal Lifetime of Nuclear Power Plants,” J. Bus. Econ. Stat., 15 , pp. 195–208.

[CrossRef]Gougar, H. D., 2004, “Advanced Core Design and Fuel Management for Pebble-Bed Reactors,” Ph.D. thesis, Department of Nuclear Engineering, Penn State University, PA.

Ougouag, A., Ortensi, J., and Hiruta, H., 2009, “Analysis of an Earthquake-Initiated Transient in a PBR,” Technical Report No. INL/CON-08-14876, Idaho National Laboratory (INL).

Shabana, A. A., 2005, "

*Dynamics of Multibody Systems*", 3rd ed., Cambridge University Press, Cambridge, England.

[CrossRef]Stewart, D. E., and Trinkle, J. C., 1996, “An Implicit Time-Stepping Scheme for Rigid-Body Dynamics With Inelastic Collisions and Coulomb Friction,” Int. J. Numer. Methods Eng., 39 , pp. 2673–2691.

[CrossRef]Bertsekas, D. P., 1995, "*Nonlinear Programming*", Athena Scientific, Belmont, MA.

Baraff, D., 1993, “Issues in Computing Contact Forces for Non-Penetrating Rigid Bodies,” Algorithmica, 10 , pp. 292–352.

[CrossRef]Stewart, D. E., 1998, “Convergence of a Time-Stepping Scheme for Rigid Body Dynamics and Resolution of Painleve’s Problems,” Arch. Ration. Mech. Anal., 145 (3), pp. 215–260.

[CrossRef]Stewart, D. E., 2000, “Rigid-Body Dynamics With Friction and Impact,” SIAM Rev., 42 (1), pp. 3–39.

[CrossRef]Tasora, A., 2007, “High Performance Complementarity Solver for Non-Smooth Dynamics,” Proceedings of the ECCOMAS Multibody Dynamics Conference , C.L.Bottasso, P.Masarati, and L.Trainelli, eds., Milan, Italy.

Hairer, E., Lubich, C., and Wanner, G., 2004, "*Geometric Numerical Integration*", Springer, Berlin.

Anitescu, M., and Potra, F. A., 1997, “Formulating Dynamic Multi-Rigid-Body Contact Problems With Friction as Solvable Linear Complementarity Problems,” Nonlinear Dyn., 14 , pp. 231–247.

[CrossRef]Anitescu, M., and Hart, G. D., 2004, “A Fixed-Point Iteration Approach for Multibody Dynamics With Contact and Friction,” Math. Program. Ser. B, 101 (1), pp. 3–32.

[CrossRef]Tasora, A., Negrut, D., and Anitescu, M., 2008, “Large-Scale Parallel Multi-Body Dynamics With Frictional Contact on the Graphical Processing Unit,” Multibody Syst. Dyn., 222 (4), pp. 315–326.

[CrossRef]Gilbert, E. G., Johnson, D. W., and Keerthi, S. S., 1988, “A Fast Procedure for Computing the Distance Between Complex Objects in Three-Dimensional Space,” IEEE J. Rob. Autom., 4 (2), pp. 193–203.

[CrossRef]Schulze, D., 2007, "*Powders and Bulk Solids*", Springer, Berlin.

Sykut, J., Molenda, M., and Horabik, J., 2008, “DEM Simulation of the Packing Structure and Wall Load in a 2-Dimensional Silo,” Granular Matter, 10 , pp. 273–278.

[CrossRef]