Allen, M., and Tildesley, D., 1990, "*Computer Simulation of Liquids*", Oxford University Press, Oxford, UK.

Haile, J., 1992, "*Molecular Dynamics Simulation: Elementary Methods*", Wiley, New York, NY.

Leach, A., 2001, "*Molecular Modelling: Principles and Applications*", Addison-Wesley, Essex, UK.

Car, R., and Parrinello, M., 1985, “Unified Approach for Molecular Dynamics and Density-Functional Theory,” Phys. Rev. Lett., 55 , pp. 2471–2474.

[CrossRef]Payne, M., Teter, M., Allan, D., Arias, T., and Joannopoulos, J., 1992, “Iterative Minimization Techniques for Ab Initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients,” Rev. Mod. Phys., 64 , pp. 1045–1097.

[CrossRef]Kresse, G., and Hafner, J., 1993, “

*Ab Initio* Molecular Dynamics for Liquid Metals,” Phys. Rev. B, 47 , pp. 558–561.

[CrossRef]Kresse, G., and Hafner, J., 1994, “

*Ab Initio* Molecular-Dynamics Simulation of the Liquid-Metal–Amorphous-Semiconductor Transition in Germanium,” Phys. Rev. B, 49 (20), pp. 14251–14269.

[CrossRef]Brooks, B., Bruccoleri, R., Olafson, B., States, D., Swaminathan, S., and Karplus, M., 1983, “CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations Supported in Part by Grants From the National Science Foundation and the National Institutes of Health,” J. Comput. Chem., 4 (2), pp. 187–217.

[CrossRef]Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, T. E., DeBolt, S., Ferguson, D., Seibel, G., and Kollman, P., 1995, “Amber, A Package of Computer Programs for Applying Molecular Mechanics, Normal Mode Analysis, Molecular Dynamics and Free Energy Calculations to Simulate The Structural and Energetic Properties of Molecules,” Comput. Phys. Commun., 91 (1–3), pp. 1–41.

[CrossRef]Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W., and Kollman, P. A., 1995, “A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules,” J. Am. Chem. Soc., 117 , pp. 5179–5197.

[CrossRef]Schuler, L., Daura, X., and Van Gunsteren, W., 2001, “An Improved GROMOS96 Force Field for Aliphatic Hydrocarbons in the Condensed Phase,” J. Comput. Chem., 22 (11), pp. 1205–1218.

[CrossRef]van Meel, J., Arnold, A., Frenkel, D., Zwart, S., and Belleman, R., 2008, “Harvesting Graphics Power for MD Simulations,” Mol. Simul., 34 (3), pp. 259–266.

[CrossRef]Dynerman, D., Butzlaff, E., and Mitchell, J., 2009, “CUSA and CUDE: GPU-Accelerated Methods for Estimating Solvent Accessible Surface Area and Desolvation,” J. Comput. Biol., 16 (4), pp. 523–537.

[CrossRef]Board, J., Causey, J., Leathrum, F., Windemuth, A., and Schulten, K., 1992, “Accelerated Molecular Dynamics Simulation With the Parallel Fast Multipole Algorithm,” Chem. Phys. Lett., 198 (1–2), pp. 89–94.

[CrossRef]Rudd, R., and Broughton, J., 1998, “Coarse-Grained Molecular Dynamics and the Atomic Limit of Finite Elements,” Phys. Rev. B, 58 (10), pp. R5893–R5896.

[CrossRef]Mukherjee, R., and Anderson, K., 2007, “Efficient Methodology for Multibody Simulations With Discontinuous Changes in System Definition,” Multibody Syst. Dyn., 18 (2), pp. 145–168.

[CrossRef]Mukherjee, R., Crozier, P., Plimpton, S., and Anderson, K., 2008, “Substructured Molecular Dynamics Using Multibody Dynamics Algorithms,” Int. J. Non-Linear Mech., 43 (10), pp. 1040–1055.

[CrossRef]Roux, B., 1999, “Implicit Solvent Models,” "*Computational Biochemistry and Biophysics*", Marcel Dekker, Inc., New York, Basel.

Ferrara, P., Apostolakis, J., and Caflisch, A., 2002, “Evaluation of a Fast Implicit Solvent Model for Molecular Dynamics Simulations,” Proteins, 46 (1), pp. 24–33.

[CrossRef]Gallicchio, E., and Levy, R., 2004, “AGBNP: An Analytic Implicit Solvent Model Suitable for Molecular Dynamics Simulations and High-Resolution Modeling,” J. Comput. Chem., 25 (4), pp. 479–499.

[CrossRef]Mongan, J., Case, D., and McCammon, J., 2004, “Constant pH Molecular Dynamics in Generalized Born Implicit Solvent,” J. Comput. Chem., 25 (16), pp. 2038–2048.

[CrossRef]Sanz-Serna, J., Calvo, M., and Skeel, R., 1994, "*Numerical Hamiltonian Problems*", Chapman and Hall, London.

Hairer, E., and Wanner, G., 1996, “Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Volume 14 of Springer Series in Computational Mathematics,” Springer-Verlag, Berlin, Heidelberg, New York, Vol. 2 , pp. 3–540.

Schlick, T., 2002, "*Molecular Modeling and Simulation: An Interdisciplinary Guide*", Springer-Verlag, Secaucus, NJ.

Tuckerman, M., Berne, B., and Martyna, G., 1992, “Reversible Multiple Time Scale Molecular Dynamics,” J. Chem. Phys., 97 (3), pp. 1990–2001.

[CrossRef]Humphreys, D., Friesner, R., and Berne, B., 1994, “A Multiple-Time-Step Molecular Dynamics Algorithm for Macromolecules,” J. Phys. Chem., 98 (27), pp. 6885–6892.

[CrossRef]Barth, E., and Schlick, T., 1998, “Overcoming Stability Limitations in Biomolecular Dynamics. I. Combining Force Splitting via Extrapolation With Langevin Dynamics in LN,” J. Chem. Phys., 109 , pp. 1617–1632.

[CrossRef]Tuckerman, M., Yarne, D., Samuelson, S., Hughes, A., and Martyna, G., 2000, “Exploiting Multiple Levels of Parallelism in Molecular Dynamics Based Calculations via Modern Techniques and Software Paradigms on Distributed Memory Computers,” Comput. Phys. Commun., 128 (1–2), pp. 333–376.

[CrossRef]Minary, P., Tuckerman, M., and Martyna, G., 2004, “Long Time Molecular Dynamics for Enhanced Conformational Sampling in Biomolecular Systems,” Phys. Rev. Lett., 93 (15), p. 150201.

[CrossRef]Garcia-Archilla, B., Sanz-Serna, J., and Skeel, R., 1998, “Long-Time-Step Methods for Oscillatory Differential Equations,” "*Numerical analysis 1997: Proceedings of the 17th Dundee Biennial Conference, June 24–27, 1997*", Addison Wesley Longman Inc., Essex, England, p. 111.

Izaguirre, J., Reich, S., and Skeel, R., 1999, “Longer Time Steps for Molecular Dynamics,” J. Chem. Phys., 110 , pp. 9853–9863.

[CrossRef]Leimkuhler, B., and Reich, S., 2001, “A Reversible Averaging Integrator for Multiple Time-Scale Dynamics,” J. Comput. Phys., 171 (1), pp. 95–114.

[CrossRef]Leimkuhler, B., 2002, “An Efficient Multiple Time-Scale Reversible Integrator for the Gravitational N-Body Problem,” Appl. Numer. Math., 43 (1–2), pp. 175–190.

[CrossRef]Ryckaert, J., Ciccotti, G., and Berendsen, H., 1977, “Numerical Integration of the Cartesian Equations of Motion of a System With Constraints: Molecular Dynamics of N-Alkanes,” J. Comput. Phys., 23 (3), pp. 327–341.

[CrossRef]van Gunsteren, W., and Berendsen, H., 1977, “Algorithms for Macromolecular Dynamics and Constraint Dynamics,” Mol. Phys., 34 (5), pp. 1311–1327.

[CrossRef]van Gunsteren, W., 1980, “Constrained Dynamics of Flexible Molecules,” Mol. Phys., 40 (4), pp. 1015–1019.

[CrossRef]Biesiadecki, J., and Skeel, R., 1993, “Dangers of Multiple Time Step Methods,” J. Comput. Phys., 109 , pp. 318–328.

[CrossRef]Izaguirre, J., Ma, Q., Matthey, T., Willcock, J., Slabach, T., Moore, B., and Viamontes, G., 2002, “Overcoming Instabilities in Verlet-I/r-RESPA With the Mollified Impulse Method,” Lecture Notes in Computational Science and Engineering, 26 , pp. 146–176.

Chin, S., 2004, “Dynamical Multiple-Time Stepping Methods for Overcoming Resonance Instabilities,” J. Chem. Phys., 120 , pp. 8–13.

[CrossRef]Ma, Q., Izaguirre, J., and Skeel, R., 2003, “Verlet-I/r-RESPA/Impulse Is Limited by Nonlinear Instability,” SIAM J. Sci. Comput. (USA), 24 (6), pp. 1951–1973.

[CrossRef]Van Gunsteren, W., and Karplus, M., 1982, “Effect of Constraints on the Dynamics of Macromolecules,” Macromolecules, 15 (6), pp. 1528–1544.

[CrossRef]Zhang, G., and Schlick, T., 1994, “The Langevin/Implicit-Euler/Normal-Mode Scheme for Molecular Dynamics at Large Time Steps,” J. Chem. Phys., 101 , pp. 4995–5012.

[CrossRef]Stern, A., and Grinspun, E., 2009, “Implicit-Explicit Variational Integration of Highly Oscillatory Problems,” Multiscale Model. Simul., 7 (4), pp. 1779–1794 (2009).

[CrossRef]Leimkuhler, B., and Skeel, R., 1994, “Symplectic Numerical Integrators in Constrained Hamiltonian Systems,” J. Comput. Phys., 112 (1), pp. 117–125.

[CrossRef]Janezic, D., and Orel, B., 1993, “Implicit Runge-Kutta Method for Molecular Dynamics Integration,” J. Chem. Inf. Comput. Sci., 33 (2), pp. 252–257.

Janezic, D., and Trobec, R., 1994, “Parallelization of an Implicit Runge-Kutta Method for Molecular Dynamics Integration,” J. Chem. Inf. Comput. Sci., 34 (3), pp. 641–646.

Mandziuk, M., and Schlick, T., 1995, “Resonance in the Dynamics of Chemical Systems Simulated by the Implicit Midpoint Scheme,” Chem. Phys. Lett., 237 (5–6), pp. 525–535.

[CrossRef]Ascher, U., and Reich, S., 1999, “The Midpoint Scheme and Variants for Hamiltonian Systems: Advantages and Pitfalls,” SIAM J. Sci. Comput. (USA), 21 (3), pp. 1045–1065.

[CrossRef]Sandu, A., and Schlick, T., 1999, “Masking Resonance Artifacts in Force-Splitting Methods for Biomolecular Simulations by Extrapolative Langevin Dynamics,” J. Comput. Phys., 151 , pp. 74–113.

[CrossRef]Van de Vyver, H., 2006, “A Fourth-Order Symplectic Exponentially Fitted Integrator,” Comput. Phys. Commun., 174 (4), pp. 255–262.

[CrossRef]Phillips, J., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R., Kale, L., and Schulten, K., 2005, “Scalable Molecular Dynamics With NAMD,” J. Comput. Chem., 26 (16), pp. 1781–1802.

[CrossRef]Humphrey, W., Dalke, A., and Schulten, K., 1996, “VMD: Visual Molecular Dynamics,” J. Mol. Graphics, 14 (1), pp. 33–38.

[CrossRef]Owens, J., Houston, M., Luebke, D., Green, S., Stone, J., and Phillips, J., 2008, “GPU Computing,” Proc. IEEE, 96 (5), pp. 879–899.

[CrossRef]Hilber, H., Hughes, T., and Taylor, R., 1977, “Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics,” Earthquake Eng. Struct. Dyn., 5 (3), pp. 283–292.

[CrossRef]Hughes, T., 1987, "*The Finite Element Method: Linear Static and Dynamic Finite Element Analysis*", Prentice-Hall, Englewood Cliffs, NJ.

Belytschko, T., Liu, W., and Moran, B., 2000, "*Nonlinear Finite Elements for Continua and Structures*", Wiley, New York.

Zienkiewicz, O., and Taylor, R., 2005, "*The Finite Element Method for Solid and Structural Mechanics*", Butterworth-Heinemann, Oxford, UK.

Ortega, J., and Rheinboldt, W., 2000, "*Iterative Solution of Nonlinear Equations in Several Variables*", Society for Industrial Mathematics.

Ramachandran, G., Kolaskar, A., Ramakrishnan, C., and Sasisekharan, V., 1974, “The Mean Geometry of the Peptide Unit From Crystal Structure Data,” Biochim. Biophys. Acta, 359 (2), pp. 298–302.

Bracewell, R., 1999, "*The Fourier Transform and Its Applications*", 3rd ed., McGraw-Hill, New York, NY.

Frenkel, D., and Smit, B., 2002, "*Understanding Molecular Simulation: From Algorithms to Applications*", Academic, New York, NY.

Jerri, A., 1977, “The Shannon Sampling Theorem-Its Various Extensions and Applications: A Tutorial Review,” Proc. IEEE, 65 (11), pp. 1565–1596.

[CrossRef]Chan, T., and Jackson, K., 1984, “Nonlinearly Preconditioned Krylov Subspace Methods for Discrete Newton Algorithms,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput., 5 , pp. 533–542.

Brown, P., and Saad, Y., 1990, “Hybrid Krylov Methods for Nonlinear Systems of Equations,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput., 11 , pp. 450–481.

Brown, P., Hindmarsh, A., and Petzold, L., 1994, “Using Krylov Methods in the Solution of Large-Scale Differential-Algebraic Systems,” SIAM J. Sci. Comput., 15 , pp. 1467–1488.

[CrossRef]Saad, Y., 2003, "*Iterative Methods for Sparse Linear Systems*", Society for Industrial Mathematics, Philadelphia, PA.

Andersen, H., 1983, “RATTLE: A Velocity Version of the SHAKE Algorithm for Molecular Dynamics Calculations,” J. Comput. Phys., 52 (1), pp. 24–34.

[CrossRef]