Research Papers

An Efficient Dynamic Formulation for Solving Rigid and Flexible Multibody Systems Based on Semirecursive Method and Implicit Integration

[+] Author and Article Information
Francisco Javier Funes

Captación Fibra DT Centro,
Telefónica de España,
Padre Isla 24,
León 24010, Spain
e-mail: franciscojavier;funesmartinez@telefonica.com

Javier García de Jalón

Escuela Técnica Superior de Ingenieros Industriales and INSIA,
Universidad Politécnica de Madrid,
José Gutiérrez Abascal 2,
Madrid 28006, Spain
e-mail: jgjalon@etsii.upm.es

1Corresponding author.

Manuscript received February 12, 2015; final manuscript received December 1, 2015; published online February 3, 2016. Assoc. Editor: Jozsef Kovecses.

J. Comput. Nonlinear Dynam 11(5), 051001 (Feb 03, 2016) (9 pages) Paper No: CND-15-1045; doi: 10.1115/1.4032246 History: Received February 12, 2015; Revised December 01, 2015

This paper presents a method for solving the dynamic equations of multibody systems containing both rigid and flexible bodies. The proposed method uses independent coordinates and projects the dynamic equations on the constraint tangent manifold by means of a velocity transformation matrix. It can be used with a wide variety of integration formulae, considering both fixed and variable stepsizes. Topological semirecursive methods are used to take advantage of the relatively small number of parameters needed. An in depth implementation analysis is performed in order to evaluate the terms involved in the integration process. Numerical and stability issues are also discussed.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Brenan, K. E. , Campbell, S. L. , and Petzold, L. R. , 1996, Numerical Solution of Initial Value Problems in Differential-Algebraic Equations, SIAM, Philadelphia, PA, Chap. 7.
Bae, D. S. , Han, J. M. , Choi, J. H. , and Yang, S. M. , 2001, “ A Generalized Recursive Formulation for Constrained Multibody Dynamics,” Int. J. Numer. Methods Eng., 50(8), pp. 1841–1859. [CrossRef]
Bae, D. S. , Han, J. M. , and Choi, J. H. , 2000, “ An Implementation Method for Constrained Flexible Multibody Dynamics Using a Virtual Body and Joint,” Multibody Syst. Dyn., 4(4), pp. 297–315. [CrossRef]
Cuadrado, J. , Dopico, D. , and Naya, M. A. , 2004, “ A Combined Penalty and Recursive Real-Time Formulation for Multibody Dynamics,” ASME J. Mech. Des., 126(4), pp. 602–608. [CrossRef]
García de Jalón, J. , Álvarez, E. , Ribera, F. , Rodríguez, I. , and Funes, F. J. , 2005 , “ A Fast and Simple Semi-Recursive Dynamic Formulation for Multi-Rigid-Body Systems,” Advances in Computational Multibody Systems (Computational Methods in Applied Sciences), Vol. 2, Springer, The Netherlands, pp. 1–23.
Géradin, M. , and Cardona, A. , 1989, “ Time Integration of the Equations of Motion in Mechanism Analysis,” Comput. Struct., 33(3), pp. 801–820. [CrossRef]
Cuadrado, J. , Dopico, D. , Naya, M. A. , and González, M. , 2004, “ Penalty, Semi-Recursive and Hybrid Methods Form MBS Real-Time Dynamics in the Context of Structural Integrators,” Multibody Syst. Dyn., 12(2), pp. 117–132. [CrossRef]
Negrut, D. , Rampalli, R. , Ottarsson, G. , and Sajdak, A. , 2006, “ On the Use of HHT Method in the Context of Index 3 Differential Algebraic Equations of Multibody Dynamics,” ASME J. Comput. Nonlinear Dyn., 2(1), pp. 73–85. [CrossRef]
Bae, D. S. , and Haug, E. J. , 1987–1988, “ A Recursive Formulation for Constrained Mechanical System Dynamics. Part I. Open Loop Systems,” Mech. Struct. Mach., 15(3), pp. 359–382. [CrossRef]
Bae, D. S. , and Haug, E. J. , 1987–1988, “ A Recursive Formulation for Constrained Mechanical System Dynamics. Part II. Closed Loop Systems,” Mech. Struct. Mach., 15(4), pp. 481–506. [CrossRef]
Ritz, W. , 1909, “ Über eine neue Methode zür Lösung Gewisser Variationsprobleme der Mathematischen Physik,” J. Reine Angew. Math., 135, pp. 1–61.
Craig, R. J. , and Bampton, M. , 1968, “ Coupling of Substructures for Dynamic Analyses,” AIAA J., 6(7), pp. 1313–1319. [CrossRef]
Heckmann, A. , 2010, “ On the Choice of Boundary Conditions for Mode Shapes in Flexible Multibody Systems,” Multibody Syst. Dyn., 23(2), pp. 141–163. [CrossRef]
Lugrís, U. , Naya, M. A. , Luaces, A. , and Cuadrado, J. , 2009, “ Efficient Calculation of the Inertia Terms in Floating Frame of Reference Formulations for Flexible Multibody Dynamics,” J. Multibody Dyn., 223(2), pp. 147–157.
Funes, F. J. , and García de Jalón, J. , 2009, “ Simulation of Flexible Multibody Dynamics Based on Recursive Topological Methods and Modal Synthesis,” ECCOMAS Thematic Conference in Multibody Dynamics, Varsovia, Poland, June 29–July 2, Paper No. 143.
Rodríguez, I. , Jiménez, J. M. , Funes, F. J. , and García de Jalón, J. , 2004, “ Recursive and Residual Algorithms for the Efficient Numerical Integration of Multibody Systems,” Multibody Syst. Dyn., 11(4), pp. 295–320. [CrossRef]
Funes, F. J. , García de Jalón, J. , de Ribera, F. , and Álvarez, E. , 2004, “ Solución de la Dinámica de Sistemas Flexibles Mediante Formulaciones Topológicas,” Métodos Computacioais em Enenharia, APMTAC, Lisboa, Portugal.
Pacejka, H. , 2012, Tire and Vehicle Dynamics, 3rd ed., Butterworth-Heinemann, Oxford, UK.
Hidalgo, A. , and García de Jalón, J. , 2014, “ Real-Time Dynamic Simulations of Large Road Vehicles Using Dense, Sparse and Parallelization Techniques,” ASME J. Comput. Nonlinear Dyn., 10(3), p. 031005.


Grahic Jump Location
Fig. 1

Treelike structure of a multibody system

Grahic Jump Location
Fig. 2

2010 UPM Formula Student car and chassis FEM model



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In