Hemeda, A. A.
, 2012, “Homotopy Perturbation Method for Solving Systems of Nonlinear Coupled Equations,” Appl. Math. Sci., 6(96), pp. 4787–4800.

Kumar, D.
,
Singh, J.
, and
Rathore, S.
, 2012, “Sumudu Decomposition Method for Nonlinear Equations,” Int. Math. Forum, 7(11), pp. 515–521.

Emad Az-Zo'bi
, 2012, “Modified Laplace Decomposition Method,” World Appl. Sci. J., 18(11), pp. 1481–1486.

Abbas, Y. Al-B.
,
Ann, J. Al-S.
, and
Merna, A. S.
, 2009, “A Multistage Adomian Decomposition Method for Solving the Autonomous Van der Pol System,” Aust. J. Basic Appl. Sci., 3(4), pp. 4397–4407.

Abassy, T. A.
,
El-Tawil, M. A.
, and
El-Zoheiry, H.
, 2007, “Modified Variational Iteration Method for Boussinesq Equation,” Comput. Math. Appl., 54(7–8), pp. 955–965.

[CrossRef]
Simo, J. C.
, and
Armero, F.
, 1992, “Geometrically Non-Linear Enhanced Strain Mixed Methods and the Method of Incompatible Modes,” Int. J. Numer. Methods Eng., 33(7), pp. 1413–1449.

[CrossRef]
Wriggers, P.
, and
Reese, S.
, 1996, “A Note on Enhanced Strain Methods for Large Deformations,” Comput. Methods Appl. Mech. Eng., 135(3–4), pp. 201–209.

[CrossRef]
Cockburn, B.
, 2001, “Devising Discontinuous Galerkin Methods for Non-Linear Hyperbolic Conservation Laws,” J. Comput. Appl. Math., 128(1–2), pp. 187–204.

[CrossRef]
Cockburn, B.
, 2003, “Discontinuous Galerkin Methods,” Z. Angew. Math. Mech., 83(11), pp. 731–754.

[CrossRef]
Noels, L.
, and
Radovitzky, R.
, 2006, “A New Discontinuous Galerkin Method for Non-Linear Mechanics,” AIAA Paper No. 2006-2122.

Izadian, J.
, and
Mohammadzade Attar, M.
, 2012, “Numerical Solution of Deformation Equations in Homotopy Analysis Method,” Appl. Math. Sci., 6(8), pp. 357–367.

Han, Z. D.
,
Rajendran, A. M.
, and
Atluri, S. N.
, 2005, “Meshless Local Petrov–Galerkin (MLPG) Approaches for Solving Nonlinear Problems With Large Deformations and Rotations,” Comput. Model. Eng. Sci., 10(1), pp. 1–12.

Zhao, T.
,
Wu, Y.
, and
Ma, H.
, 2010, “Chebyshev–Legendre Pseudo-Spectral Methods for Nonclassical Parabolic Equations,” J. Inf. Comput. Sci., 7(8), pp. 1809–1817.

Lee, S. Y.
,
Lu, S. Y.
, and
Liu, Y. T.
, 2008, “Exact Large Deflection Solutions for Timoshenko Beams With Nonlinear Boundary Conditions,” Comput. Model. Eng. Sci., 33(3), pp. 293–312.

Peng, J.-S.
,
Liu, Y.
, and
Yang, J.
, 2010, “A Semianalytical Method for Nonlinear Vibration of Euler-Bernoulli Beams With General Boundary Conditions,” Math. Probl. Eng., 2010, p. 591786.

Hu, H. Y.
, and
Chen, J. S.
, 2008, “Radial Basis Collocation Method and Quasi-Newton Iteration for Nonlinear Elliptic Problems,” Numer. Methods Partial Differ. Equations, 24(3), pp. 991–1017.

[CrossRef]
Yan, J.-P.
, and
Guo, B.-Y.
, 2011, “A Collocation Method for Initial Value Problems of Second-Order ODEs by Using Laguerre Functions,” Numer. Math.: Theory Methods Appl., 4(2), pp. 283–295.

Rashidinia, J.
,
Ghasemi, M.
, and
Jalilian, R.
, 2010, “A Collocation Method for the Solution of Nonlinear One-Dimensional Parabolic Equations,” Math. Sci., 4(1), pp. 87–104.

Shu, C.
,
Ding, H.
, and
Yeo, K. S.
, 2004, “Solution of Partial Differential Equations by a Global Radial Basis Function-Based Differential Quadrature Method,” Eng. Anal. Boundary Elem., 28(10), pp. 1217–1226.

[CrossRef]
Ma, H.
, and
Qin, Q.-H.
, 2008, “An Interpolation-Based Local Differential Quadrature Method to Solve Partial Differential Equations Using Irregularly Distributed Nodes,” Commun. Numer. Methods Eng., 24(7), pp. 573–584.

[CrossRef]
Liu, G. R.
, and
Wu, T. Y.
, 2000, “Numerical Solution for Differential Equations of Duffing-Type Non-Linearity Using the Generalized Differential Quadrature Rule,” J. Sound Vib., 237(5), pp. 805–817.

[CrossRef]
Tomasiello, S.
, 2003, “Simulating Non-Linear Coupled Oscillators by an Iterative Differential Quadrature Method,” J. Sound Vib., 265(3), pp. 507–525.

[CrossRef]
Pu, J.-P.
, and
Zheng, J.-J.
, 2006, “Structural Dynamic Responses Analysis Applying Differential Quadrature Method,” J. Zhejiang Univ., Sci., A, 7(11), pp. 1831–1838.

[CrossRef]
Ordokhani, Y.
, 2007, “A Collocation Method for Solving Nonlinear Differential Equations Via Hybrid of Rationalized Haar Functions,” J. Sci. Tarbiat Moallem Univ., 7(3), pp. 223–232.

Tsai, C.-C.
,
Liu, C.-S.
, and
Yeih, W.-C.
, 2010, “Fictitious Time Integration Method of Fundamental Solutions With Chebyshev Polynomials for Solving Poisson-Type Nonlinear PDEs,” Comput. Model. Eng. Sci., 56(2), pp. 131–151.

Chen, L.
, 2010, “An Integral Approach for Large Deflection Cantilever Beams,” Int. J. Non-Linear Mech., 45(3), pp. 301–305.

[CrossRef]
Zhu, T.
,
Zhang, J.
, and
Atluri, S. N.
, 1998, “A Meshless Local Boundary Integral Equation (LBIE) Method for Solving Nonlinear Problems,” Comput. Mech., 22(2), pp. 174–186.

[CrossRef]
Li, S.-C.
, and
Wang, Z.-Q.
, 2012, High Precision and Meshless Barycentric Interpolation Collocation Method: Algorithm, Program and Engineering Application, Beijing Science Press, Beijing.

Koçak, H.
, and
Yıldırım, A.
, 2011, “An Efficient New Iterative Method for Finding Exact Solutions of Nonlinear Time-Fractional Partial Differential Equations,” Nonlinear Anal.: Modell. Control, 16(4), pp. 403–414.

Amirfakhrian, M.
, and
Keighobadi, S.
, 2012, “Solution for Partial Differential Equations Involving Logarithmic Nonlinearities,” Aust. J. Basic Appl. Sci., 5(4), pp. 60–66.

Duangpithak, S.
, 2012, “Variational Iteration Method for Special Nonlinear Partial Differential Equation,” Int. J. Math. Anal., 6(22), pp. 1071–1077.

Zhong, H.-Z.
, and
Lan, M.-Y.
, 2006, “Solution of Nonlinear Initial-Value Problems by the Spline-Based Differential Quadrature Method,” J. Sound Vib., 296(4–5), pp. 908–918.

[CrossRef]
Gachpazan, M.
, and
Kamyad, A. V.
, 2004, “Solving of Second Order Nonlinear PDE Problems by Using Artificial Controls With Controlled Error,” J. Appl. Math. Comput., 15(1–2), pp. 173–184.

[CrossRef]
Weideman, J. A. C.
, and
Reddy, S. C.
, 2000, “A

matlab Differentiation Matrix Suite,” ACM Trans. Math. Software, 26(4), pp. 465–519.

[CrossRef]
Floater, M. S.
, and
Hormann, K.
, 2007, “Barycentric Rational Interpolation With No Poles and High Rates of Approximation,” Numer. Math., 107(2), pp. 315–331.

[CrossRef]
Nayfeh, A. H.
, and
Mook, D. T.
, 1979, Nonlinear Oscillations, Wiley, New York.