Puig,
L.
,
Barton,
A.
, and
Rando,
N.
, 2010, “
A Review on Large Deployable Structures for Astrophysics Missions,” Acta Astronaut.,
67(1–2), pp. 12–26.

[CrossRef]
Tibert,
A. G.
, 2002, “
Deployable Tensegrity Structure for Space Applications,” Ph.D. dissertation, Royal Institute of Technology, Stockholm, Sweden.

Li,
T. J.
, 2012, “
Deployment Analysis and Control of Deployable Space Antenna,” Aerosp. Sci. Technol.,
18(1), pp. 42–47.

[CrossRef]
Neto,
M. A.
,
Ambrósio,
J. A. C.
, and
Leal,
R. P.
, 2005, “
Composite Materials in Flexible Multibody Systems,” Comput. Methods Appl. Mech. Eng.,
195(50–51), pp. 6860–6873.

Ambrósio,
J. A. C.
,
Neto,
M. A.
, and
Leal,
R. P.
, 2007, “
Optimization of a Complex Flexible Multibody Systems With Composite Materials,” Multibody Syst. Dyn.,
18(2), pp. 117–144.

[CrossRef]
Campanelli,
M.
,
Berzeri,
M.
, and
Shabana,
A. A.
, 2000, “
Performance of the Incremental and Non-Incremental Finite Element Formulations in Flexible Multibody Problems,” ASME J. Mech. Des.,
122(4), pp. 498–507.

[CrossRef]
Mitsugi,
J.
,
Ando,
K.
,
Senbokuya,
Y.
, and
Meguro,
A.
, 2000, “
Deployment Analysis of Large Space Antenna Using Flexible Multibody Dynamics Simulation,” Acta Astronaut.,
47(1), pp. 19–26.

[CrossRef]
Thomson,
M. W.
, 1999, “
The Astromesh Deployable Reflector,” IEEE Trans. Antennas Propag.,
3, pp. 1516–1535.

Li,
P.
,
Liu,
C.
,
Tian,
Q.
,
Hu,
H. Y.
, and
Song,
Y. P.
, 2015, “
Dynamics of a Deployable Mesh Reflector of Satellite Antenna: Form Finding and Modal Analysis,” ASME J. Comput. Nonlinear Dyn.,
11(4), p. 041017.

[CrossRef]
Zhang,
Y. Q.
,
Duan,
B. Y.
, and
Li,
T. J.
, 2012, “
A Controlled Deployment Method for Flexible Deployable Space Antennas,” Acta Astronaut.,
81(1), pp. 19–29.

[CrossRef]
Ma,
X. F.
,
Song,
Y. P.
,
Li,
Z. J.
,
Li,
T. J.
,
Wang,
Z. W.
, and
Deng,
H. Q.
, 2013, “
Mesh Reflector Antennas: Form-Finding Analysis Review,” AIAA Paper No. 2013-1576.

Shabana,
A. A.
, 1996, “
An Absolute Nodal Coordinates Formulation for the Large Rotation and Deformation Analysis of Flexible Bodies,” University of Illinois at Chicago, Technical Report No. MBS96-1-UIC.

Shabana,
A. A.
, 1997, “
Flexible Multi-Body Dynamics Review of Past and Recent Developments,” Multibody Syst. Dyn.,
1(2), pp. 189–222.

[CrossRef]
Schiehlen,
W.
, 2007, “
Research Trends in Multibody System Dynamics,” Multibody Syst. Dyn.,
18(1), pp. 3–13.

[CrossRef]
Dibold,
M.
,
Gerstmayr,
J.
, and
Irschik,
H.
, 2009, “
A Detailed Comparison of the Absolute Nodal Coordinate and the Floating Frame of Reference Formulation in Deformable Multibody Systems,” ASME J. Comput. Nonlinear Dyn.,
4(2), pp. 710–733.

[CrossRef]
Gerstmayr,
J.
,
Sugiyama,
H.
, and
Mikkola,
A.
, 2013, “
Review on the Absolute Nodal Coordinate Formulation for Large Deformation Analysis of Multibody Systems,” ASME J. Comput. Nonlinear Dyn.,
8(3), p. 031016.

[CrossRef]
Liu,
C.
,
Tian,
Q.
, and
Hu,
H. Y.
, 2011, “
Dynamics of a Large Scale Rigid-Flexible Multibody System Composed of Composite Laminated Plates,” Multibody Syst. Dyn.,
26(3), pp. 283–305.

[CrossRef]
Li,
T. J.
, and
Wang,
Y.
, 2009, “
Deployment Dynamic Analysis of Deployable Antennas Considering Thermal Effect,” Aerosp. Sci. Technol.,
13(4–5), pp. 210–215.

[CrossRef]
Peng,
Y.
,
Zhao,
Z. H.
,
Ma,
Y. H.
,
Yang,
J. G.
, and
Ren,
G. X.
, 2014, “
Flexible Multi-Body Dynamical Simulation of Astromesh Truss Deployment,” The 3rd Joint International Conference on Multibody System Dynamics and the 7th Asian Conference on Multibody Dynamics, BEXCO, Busan, Korea.

Melanz,
D.
,
Khude,
N.
,
Jayakumar,
P.
, and
Negrut,
D.
, 2013, “
A Matrix-Free Newton–Krylov Parallel Implicit Implementation of the Absolute Nodal Coordinate Formulation,” ASME J. Comput. Nonlinear Dyn.,
9(1), p. 011006.

[CrossRef]
Serban,
R.
,
Melanz,
D.
,
Li,
A.
,
Stabciulescu,
I.
,
Jayakumar,
P.
, and
Negrut,
D.
, 2015, “
A GPU-Based Preconditioned Newton–Krylov Solver for Flexible Multibody Dynamics,” Int. J. Numer. Methods Eng.,
102(9), pp. 1585–1604.

[CrossRef]
Smith,
B.
, 2004, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations,
Cambridge University Press,
Cambridge, UK.

Toselli,
A.
, and
Widlund,
O. B.
, 2005, Domain Decomposition Methods—Algorithms and Theory (Springer Series in Computational Mathematics),
Springer,
New York.

Khan,
I. M.
,
Ahn,
W.
,
Anderson,
K. S.
, and
De,
S.
, 2013, “
A Logarithmic Complexity Floating Frame of Reference Formulation With Interpolating Splines for Articulated Multi-Flexible-Body Dynamics,” Int. J. Non Linear Mech.,
57(4), pp. 146–153.

[CrossRef] [PubMed]
Khan,
I. M.
, and
Anderson,
K. S.
, 2015, “
A Logarithmic Complexity Divide-and-Conquer Algorithm for Multi-Flexible-Body Dynamics Including Large Deformations,” Multibody Syst. Dyn.,
34(1), pp. 81–101.

[CrossRef]
Featherstone,
R.
, 1999, “
A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)) Calculation of Rigid-Body Dynamics. Part 1: Basic Algorithm,” Int. J. Rob. Res.,
18(9), pp. 867–875.

[CrossRef]
Featherstone,
R.
, 1999, “
A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)) Calculation of Rigid-Body Dynamics. Part 2: Trees, Loops, and Accuracy,” Int. J. Rob. Res.,
18(9), pp. 876–892.

[CrossRef]
Rubinstein,
M. F.
, 1967, “
Combined Analysis by Substructures and Recursion,” ASCE J. Struct. Div.,
93(ST2), pp. 231–235.

Przemieniecki,
J. S.
, 1963, “
Matrix Structural Analysis of Substructures,” AIAA J.,
1(1), pp. 138–147.

[CrossRef]
Bathe,
K.
, 1996, Finite Element Procedures,
Prentice Hall,
Englewood Cliffs, NJ.

Kocak,
S.
, and
Akay,
H. U.
, 2001, “
Parallel Schur Complement Method for Large-Scale Systems on Distributed Memory Computers,” Appl. Math. Modell.,
25(10), pp. 873–886.

[CrossRef]
Farhat,
C.
, and
Roux,
F.-X.
, 1991, “
A Method of Finite Element Tearing and Interconnecting and Its Parallel Solution Algorithm,” Int. J. Numer. Methods Eng.,
32(6), pp. 1205–1227.

[CrossRef]
Farhat,
C.
, and
Mandel,
J.
, 1998, “
The Two-Lever FETI Method for Static and Dynamic Plate Problems Part I: An Optimal Iterative Solver for Biharmonic Systems,” Comput. Methods Appl. Mech. Eng.,
155(1–2), pp. 129–151.

[CrossRef]
Farhat,
C.
,
Pierson,
K. H.
, and
Lesoinne,
M.
, 2000, “
The Second Generation of FETI Methods and Their Application to the Parallel Solution of Large-Scale Linear and Geometrically Nonlinear Structural Analysis Problems,” Comput. Methods Appl. Mech. Eng.,
184(2–4), pp. 333–374.

[CrossRef]
Farhat,
C.
,
Lesoinne,
M.
,
LeTallec,
P.
,
Pierson,
K.
, and
Rixen,
D.
, 2001, “
FETI-DP: A Dual-Primal Unified FETI Method−Part I: A Faster Alternative to the Two-Level FETI Method,” Int. J. Numer. Methods Eng.,
50(7), pp. 1523–1544.

[CrossRef]
Quinn,
M. J.
, 2004, Parallel Programming in C With MPI and OpenMP,
McGraw-Hill Higher Education,
Boston, MA.

Shabana,
A. A.
, and
Yakoub,
R. Y.
, 2001, “
Three-Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory,” ASME J. Mech. Des.,
123(4), pp. 606–613.

[CrossRef]
Gerstmsyr,
J.
, and
Shabana,
A. A.
, 2006, “
Analysis of Thin Beams and Cables Using the Absolute Nodal Coordinate Formulation,” Nonlinear Dyn.,
45(1–2), pp. 109–130.

[CrossRef]
García De Jalón,
J.
, and
Bayo,
E.
, 1994, Kinematic and Dynamic Simulation of Multibody Systems the Real-Time Challenge,
Springer,
New York.

Shabana,
A. A.
, 2010, Computational Dynamics,
Wiley,
Singapore.

Bauchau,
O. A.
, 2010, “
Parallel Computation Approaches for Flexible Multibody Dynamic Simulations,” J. Franklin Inst.,
347(1), pp. 53–68.

[CrossRef]
Cardona,
A.
, 1989, “
An Integrated Approach to Mechanism Analysis,” Ph.D. dissertation, Universite de liege, Liège, Belgium.

Kübler,
L.
,
Eberhard,
P.
, and
Geisler,
J.
, 2003, “
Flexible Multibody Systems With Large Deformations and Nonlinear Structural Damping Using Absolute Nodal Coordinates,” Nonlinear Dyn.,
34(1–2), pp. 31–52.

[CrossRef]
Takahashi,
Y.
, and
Shimizu,
N.
, 2002, “
Introduction of Damping Matrix Into Absolute Nodal Coordinate Formulation,” Asian Conference on Multibody Dynamics, pp. 33–40.

Lee,
J. W.
,
Kim,
H. W.
,
Ku,
H. C.
, and
Wan,
S. Y.
, 2009, “
Comparison of External Damping Models in a Large Deformation Problem,” J. Sound Vib.,
325(325), pp. 722–741.

[CrossRef]
Hussein,
B.
,
Negrut,
D.
, and
Shabana,
A. A.
, 2008, “
Implicit and Explicit Integration in the Solution of the Absolute Nodal Coordinate Differential/Algebraic Equations,” Nonlinear Dyn.,
54(4), pp. 283–296.

[CrossRef]
Tian,
Q.
,
Zhang,
Y. Q.
,
Chen,
L. P.
, and
Yang,
J. Z.
, 2009, “
An Efficient Hybrid Method for Multibody Dynamics Simulation Based on Absolute Nodal Coordinate Formulation,” ASME J. Comput. Nonlinear Dyn.,
4(2), p. 021009.

[CrossRef]
Shabana,
A. A.
, and
Hussein,
B.
, 2009, “
A Two-Loop Sparse Matrix Numerical Integration Procedure for the Solution of Differential/Algebraic Equations: Application to Multibody Systems,” J. Sound Vib.,
327(3–5), pp. 557–563.

[CrossRef]
Arnold,
M.
, and
Brüls,
O.
, 2007, “
Convergence of the Generalized-A Scheme for Constrained Mechanical Systems,” Multibody Syst. Dyn.,
18(2), pp. 185–202.

[CrossRef]
Tian,
Q.
, 2009, “
Flexible Multibody Dynamics Research and Application Based on the Absolute Nodal Coordinate Method,” Ph.D. dissertation, Huazhong University of Science and Technology, Wuhan, China.

Schenk,
O.
, and
Gärtner,
K.
, 2006, “
On Fast Factorization Pivoting Methods for Symmetric Indefinite Systems,” Electron. Trans. Numer. Anal.,
23, pp. 158–179.

Schenk,
O.
,
Wächter,
A.
, and
Hagemann,
M.
, 2007, “
Matching-Based Preprocessing Algorithms to the Solution of Saddle-Point Problems in Large-Scale Nonconvex Interior-Point Optimization,” Comput. Optim. Appl.,
36(2–3), pp. 321–341.

[CrossRef]
Davis,
T. A.
, 2006, Direct Methods for Sparse Linear Systems,
SIAM,
Phiadelphia, PA.

Sopanen,
J.
, and
Mikkola,
A.
, 2003, “
Description of Elastic Forces in Absolute Nodal Coordinate Formulation,” Nonlinear Dyn.,
34(1), pp. 53–74.

[CrossRef]
Bauchau,
O. A.
, 2010, Flexible Multibody System (Springer Series in Solid Mechanics and Its Applications),
Springer,
New York.

George,
A.
, and
Liu,
J. W. H.
, 1981, Computer Solution of Large Sparse Positive Definite Systems,
Prentice-Hall,
Englewood Cliffs, NJ.

Liu,
C.
,
Tian,
Q.
, and
Hu,
H. Y.
, 2012, “
Dynamics and Control of a Spatial Rigid-Flexible Multibody System With Multiple Cylindrical Clearance Joints,” Mech. Mach. Theory,
52, pp. 106–129.

[CrossRef]