Research Papers

Improved Self-Tuning Fuzzy Proportional–Integral–Derivative Versus Fuzzy-Adaptive Proportional–Integral–Derivative for Speed Control of Nonlinear Hybrid Electric Vehicles

[+] Author and Article Information
Anil Kumar Yadav

Department of Electronics,
Banasthali University,
Tonk, Rajasthan 304022, India
e-mail: anilei007@gmail.com

Prerna Gaur

Division of ICE,
Dwarka, New Delhi 110078, India
e-mail: prernagaur@yahoo.com

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received June 12, 2015; final manuscript received May 16, 2016; published online August 9, 2016. Assoc. Editor: Hiroshi Yabuno.

J. Comput. Nonlinear Dynam 11(6), 061013 (Aug 09, 2016) (7 pages) Paper No: CND-15-1161; doi: 10.1115/1.4033685 History: Received June 12, 2015; Revised May 16, 2016

The objective of this paper is to identify the suitable advance controller among optimized proportional–integral–derivative (O-PID), improved self-tuning fuzzy-PID (ISTF-PID), advanced fuzzy nonadaptive PID (AF-NA-PID), and AF-adaptive PID (AF-A-PID) controllers for speed control of nonlinear hybrid electric vehicle (HEV) system. The conventional PID (C-PID) controller cannot tackle the nonlinear systems effectively and gives a poor tracking and disturbance rejection performance. The performances of HEV with the proposed advance controllers are compared with existing C-PID, STF-PID, and conventional fuzzy PID (C-F-PID) controllers. The proposed controllers are designed to achieve the desired vehicle speed and rejection of disturbance due to road grade with reduced pollution and fuel economy.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Neath, M. J. , Swain, A. K. , Madawala, U. K. , and Thrimawithana, D. J. , 2014, “ An Optimal PID Controller for a Bidirectional Inductive Power Transfer System Using Multiobjective Genetic Algorithm,” IEEE Trans. Power Electron., 29(3), pp. 1523–1531. [CrossRef]
Yadav, A. K. , and Gaur, P. , 2014, “ Robust Adaptive Speed Control of Uncertain Hybrid Electric Vehicle Using Electronic Throttle Control With Varying Road Grade,” Nonlinear Dyn., 76(1), pp. 305–321. [CrossRef]
Meza, J. L. , Santibanez, V. , Soto, R. , and Llama, M. A. , 2012, “ Fuzzy Self-Tuning PID Semiglobal Regulator for Robot Manipulators,” IEEE Trans. Ind. Electron., 59(6), pp. 2709–2718. [CrossRef]
Yadav, A. K. , and Gaur, P. , 2014, “ AI-Based Adaptive Control and Design of Autopilot System for Nonlinear UAV,” Sadhana, 39(4), pp. 765–783. [CrossRef]
Lin, C.-M. , Lin, M.-H. , and Chen, C.-W. , 2011, “ SoPC-Based Adaptive PID Control System Design for Magnetic Levitation System,” IEEE Syst. J., 5(2), pp. 278–287. [CrossRef]
Ahn, K. K. , and Truong, D. Q. , 2009, “ Online Tuning Fuzzy PID Controller Using Robust Extended Kalman Filter,” J. Process Control, 19(6), pp. 1011–1023. [CrossRef]
Truong, D. Q. , and Ahn, K. K. , 2011, “ Force Control for Press Machines Using an Online Smart Tuning Fuzzy PID Based on a Robust Extended Kalman Filter,” Expert Syst. Appl., 38(5), pp. 5879–5894. [CrossRef]
Nasir Uddin, M. , Abido, M. A. , and Rahman, M. A. , 2005, “ Real-Time Performance Evaluation of a Genetic-Algorithm-Based Fuzzy Logic Controller for IPM Motor Drives,” IEEE Trans. Ind. Appl., 41(1), pp. 246–252. [CrossRef]
Cheng, M. , Sun, Q. , and Zhou, E. , 2006, “ New Self-Tuning Fuzzy PI Control of a Novel Doubly Salient Permanent-Magnet Motor Drive,” IEEE Trans. Ind. Electron., 53(3), pp. 814–821. [CrossRef]
Shen, A. W. , Pham, C.-T. , Dzung, P. Q. , Anh, N. B. , and Viet, L. H. , 2012, “ Using Fuzzy Logic Self-Tuning PI Gain Controller Z-Source Inverter in Hybrid Electric Vehicles,” IACSIT Int. J. Eng. Technol., 4(4), pp. 382–387. [CrossRef]
Mudi, R. K. , and Pal, N. R. , 1999, “ A Robust Self-Tuning Scheme for PI and PD Type Fuzzy Controllers,” IEEE Trans. Fuzzy Syst., 7(1), pp. 2–16. [CrossRef]
Pham, C.-T. , Shen, A. W. , Dzung, P. Q. , Anh, N. B. , and Viet, L. H. , 2012, “ Self-Tuning Fuzzy PI-Type Controller in Z-Source Inverter for Hybrid Electric Vehicles,” Int. J. Power Electron. Drive Syst., 2(4), pp. 353–363.
Woo, Z.-W. , Chung, H.-Y. , and Lin, J.-J. , 2000, “ A PID Type Fuzzy Controller With Self-Tuning Scaling Factors,” Fuzzy Sets Syst., 115(2), pp. 321–326. [CrossRef]
Xu, J.-X. , Hang, C.-C. , and Liu, C. , 2000, “ Parallel Structure and Tuning of a Fuzzy PID Controller,” Automatica, 36(5), pp. 673–684. [CrossRef]
Liu, F.-C. , Liang, L.-H. , and Gao, J.-J. , “ Fuzzy PID Control of Space Manipulator for Both Ground Alignment and Space Applications,” Int. J. Autom. Comput., 11(4), pp. 353–360. [CrossRef]
Happyanto, D. C. , Soebagio , and Purnomo, M. H. , 2012, “ New Algorithm for the Smoothing Speed Control of Induction Motor in Electric Car Based on Self-Tuning Parameter PID-Fuzzy Logic,” IPTEK J. Technol. Sci., 23(2), pp. 41–47. [CrossRef]
Yadav, A. K. , Gaur, P. , Mittal, A. P. , and Anzar, M. , 2011, “ Comparative Analysis of Various Control Techniques for Inverted Pendulum,” India International Conference on Power Electronics 2010 (IICPE-2010), New Delhi, India, Jan. 28–30.
Fereidouni, A. , Masoum, M. A. S. , and Moghbel, M. , 2015, “ A New Adaptive Configuration of PID Type Fuzzy Logic Controller,” ISA Trans., 56(3), pp. 222–240. [CrossRef] [PubMed]
Li, W. , 1998, “ Design of a Hybrid Fuzzy Logic Proportional Plus Conventional Integral-Derivative Controller,” IEEE Trans. Fuzzy Syst., 6(4), pp. 449–463. [CrossRef]
Raviraj, V. S. C. , and Sen, P. C. , 1997, “ Comparative Study of Proportional–Integral, Sliding Mode and Fuzzy Logic Controllers for Power Converters,” IEEE Trans. Ind. Appl., 33(2), pp. 518–524. [CrossRef]
Truong, D. Q. , and Ahn, K. K. , 2009, “ Force Control for Hydraulic Load Simulator Using Self-Tuning Grey Predictor Fuzzy PID,” Mechatronics, 19(2), pp. 233–246. [CrossRef]
Yadav, A. K. , Gaur, P. , Jha, S. K. , Gupta, J. R. P. , and Mittal, A. P. , 2011, “ Optimal Speed Control of Hybrid Electric Vehicles,” J. Power Electron., 11(4), pp. 393–400. [CrossRef]
Karasakal, O. , Guzelkaya, M. , Eksin, I. , and Yesil, E. , 2011, “ An Error-Based On-Line Rule Weight Adjustment Method for Fuzzy PID Controllers,” Expert Syst. Appl., 38(8), pp. 10124–10132. [CrossRef]
Wirasingha, S. G. , and Emadi, A. , 2011, “ Classification and Review of Control Strategies for Plug-In Hybrid Electric Vehicles,” IEEE Trans. Veh. Technol., 60(1), pp. 111–122. [CrossRef]
Naranjo, J. E. , Gonzalez, C. , García, R. , and de Pedro, T. , 2007, “ Cooperative Throttle and Brake Fuzzy Control for ACC + Stop & Go Maneuvers,” IEEE Trans. Veh. Technol., 56(4), pp. 1623–1630. [CrossRef]
Liu, W. , 2013, Introduction to Hybrid Vehicles System Modeling and Control, 2nd ed., Wiley, Hoboken, NJ.
Guardiola, C. , Pla, B. , Onori, S. , and Rizzoni, G. , 2014, “ Insight Into the HEV/PHEV Optimal Control Solution Based on a New Tuning Method,” Control Eng. Pract., 29(1), pp. 247–256. [CrossRef]
Vasak, M. , Baotic, M. , Petrovic, I. , and Peric, N. , 2007, “ Hybrid Theory-Based Time-Optimal Control of an Electronic Throttle,” IEEE Trans. Ind. Electron., 54(3), pp. 1483–1494. [CrossRef]
Jiao, X. , Zhang, J. , and Shen, T. , 2014, “ An Adaptive Servo Control Strategy for Automotive Electronic Throttle and Experimental Validation,” IEEE Trans. Ind. Electron., 61(11), pp. 6275–6284. [CrossRef]


Grahic Jump Location
Fig. 1

Mechatronics diagram of the electronic throttle control system

Grahic Jump Location
Fig. 2

(a) Schematic diagram of the HEV system and (b) block diagram of vehicle with ETCS for speed control application

Grahic Jump Location
Fig. 3

Structure of the C-F-PID controller

Grahic Jump Location
Fig. 4

Configuration of AF-NA-PID and AF-A-PID controller

Grahic Jump Location
Fig. 5

Structure of the ISTF-PID controller

Grahic Jump Location
Fig. 6

Response of ETCS with PI controller

Grahic Jump Location
Fig. 7

Response of speed with (a) C-PID, O-PID, C-STF-PID, and ISTF-PID controllers and (b) C-F-PID, AF-NA-PID, and AF-A-PID controllers

Grahic Jump Location
Fig. 8

Speed response of HEV under disturbance due to road grade and uncertainty in mass



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In